The 2016 WHO classification and diagnostic criteria for myeloproliferative neoplasms: document summary and in-depth discussion

Tiziano Barbui, Jürgen Thiele, Heinz Gisslinger, Hans Michael Kvasnicka, Alessandro M Vannucchi, Paola Guglielmelli, Attilio Orazi, Ayalew Tefferi, Tiziano Barbui, Jürgen Thiele, Heinz Gisslinger, Hans Michael Kvasnicka, Alessandro M Vannucchi, Paola Guglielmelli, Attilio Orazi, Ayalew Tefferi

Abstract

The new edition of the 2016 World Health Organization (WHO) classification system for tumors of the hematopoietic and lymphoid tissues was published in September 2017. Under the category of myeloproliferative neoplasms (MPNs), the revised document includes seven subcategories: chronic myeloid leukemia, chronic neutrophilic leukemia, polycythemia vera (PV), primary myelofibrosis (PMF), essential thrombocythemia (ET), chronic eosinophilic leukemia-not otherwise specified and MPN, unclassifiable (MPN-U); of note, mastocytosis is no longer classified under the MPN category. In the current review, we focus on the diagnostic criteria for JAK2/CALR/MPL mutation-related MPNs: PV, ET, and PMF. In this regard, the 2016 changes were aimed at facilitating the distinction between masked PV and JAK2-mutated ET and between prefibrotic/early and overtly fibrotic PMF. In the current communication, we (i) provide practically useful resource tables and graphs on the new diagnostic criteria including outcome, (ii) elaborate on the rationale for the 2016 changes, (iii) discuss the complementary role of mutation screening, (iv) address ongoing controversies and propose solutions, (v) attend to the challenges of applying WHO criteria in routine clinical practice, and (vi) outline future directions from the perspectives of the clinical pathologist.

Conflict of interest statement

The authors declare that they have no conflict of interest.

Figures

Fig. 1
Fig. 1
Mortality a, major arterial and venous thrombotic complications b, myelofibrosis c, and Blast transformation d in ET, Pre-PMF, overt PMF and PV cohorts. Prevalence of previous events and cumulative incidence (CI) during follow-up calculated at 5, 10, and 15 years from diagnosis. For PMF, two different data sets were considered: n = 707 for panel a, b and n = 383 for panel d and regarding PV for all panels

References

    1. Swerdlow SH, editor. WHO classification of Tumours of Haematopoietic and Lymphoid Tissues. 4th edn. Lyon, France: International Agency for Research on Cancer; 2017.
    1. Arber DA, et al. The 2016 revision to the World Health Organization classification of myeloid neoplasms and acute leukemia. Blood. 2016;127:2391–2405. doi: 10.1182/blood-2016-03-643544.
    1. Bornhäuser M, et al. Concurrent JAK2(V617F) mutation and BCR-ABL translocation within committed myeloid progenitors in myelofibrosis. Leukemia. 2007;21:1824–1826. doi: 10.1038/sj.leu.2404730.
    1. Hussein K, et al. Myelofibrosis evolving during imatinib treatment of a chronic myeloproliferative disease with coexisting BCR-ABL translocation and JAK2V617F mutation. Blood. 2007;109:4106–4107. doi: 10.1182/blood-2006-12-061135.
    1. Maxson JE, et al. Oncogenic CSF3R mutations in chronic neutrophilic leukemia and atypical CML. N. Engl. J. Med. 2013;368:1781–1790. doi: 10.1056/NEJMoa1214514.
    1. Pardanani A, et al. CSF3R T618I is a highly prevalent and specific mutation in chronic neutrophilic leukemia. Leukemia. 2013;27:1870–1873. doi: 10.1038/leu.2013.122.
    1. Granger JM, Kontoyiannis DP. Etiology and outcome of extreme leukocytosis in 758 nonhematologic cancer patients: a retrospective, single-institution study. Cancer. 2009;115:3919–3923. doi: 10.1002/cncr.24480.
    1. Bain B, et al. Chronic eosinophilic leukemia and the hypereosinophilic syndrome. In: Jaffe ES, Harris NL, Stein H, Vardiman JW, et al., editors. World Health Organization Classification of Tumours: Tumours of the Haematopoietic and Lymphoid Tissues. Lyon, France: International Agency for Research on Cancer (IARC) Press; 2001. pp. 29–31.
    1. Wang SA, et al. Targeted next-generation sequencing identifies a subset of idiopathic hypereosinophilic syndrome with features similar to chronic eosinophilic leukemia, not otherwise specified. Mod. Pathol. 2016;29:854–864. doi: 10.1038/modpathol.2016.75.
    1. Pardanani A, et al. Predictors of survival in WHO-defined hypereosinophilic syndrome and idiopathic hypereosinophilia and the role of next-generation sequencing. Leukemia. 2016;30:1924–1926. doi: 10.1038/leu.2016.73.
    1. De Stefano V, et al. Splanchnic vein thrombosis in myeloproliferative neoplasms: risk factors for recurrences in a cohort of 181 patients. Blood Cancer J. 2016;6:e493. doi: 10.1038/bcj.2016.103.
    1. Vardiman JW, et al. The 2008 revision of the WHO classification of myeloid neoplasms and acute leukemia: rationale and important changes. Blood. 2009;114:937–951. doi: 10.1182/blood-2009-03-209262.
    1. Barosi G. Essential thrombocythemia vs. early/prefibrotic myelofibrosis: why does it matter. Best. Pract. Res. Clin. Haematol. 2014;27:129–140. doi: 10.1016/j.beha.2014.07.004.
    1. Guglielmelli P, et al. Presentation and outcome of patients with 2016 WHO diagnosis of prefibrotic and overt primary myelofibrosis. Blood. 2017;129:3227–3236. doi: 10.1182/blood-2017-01-761999.
    1. Jeryczynski G, et al. Pre-fibrotic/early primary myelofibrosis vs. WHO-defined essential thrombocythemia: the impact of minor clinical diagnostic criteria on the outcome of the disease. Am. J. Hematol. 2017;92:885–891. doi: 10.1002/ajh.24788.
    1. Gisslinger H, et al. Clinical impact of bone marrow morphology for the diagnosis of essential thrombocythemia: comparison between the BCSH and the WHO criteria. Leukemia. 2016;30:1126–1132. doi: 10.1038/leu.2015.360.
    1. Thiele J, et al. Essential thrombocythemia versus early primary myelofibrosis: a multicenter study to validate the WHO classification. Blood. 2011;117:5710–5718. doi: 10.1182/blood-2010-07-293761.
    1. Barbui T, et al. Survival and disease progression in essential thrombocythemia are significantly influenced by accurate morphologic diagnosis: an international study. J. Clin. Oncol. 2011;29:3179–3184. doi: 10.1200/JCO.2010.34.5298.
    1. Gianelli U, Iurlo A, Cattaneo D, Lambertenghi-Deliliers G. Cooperation between pathologists and clinicians allows a better diagnosis of Philadelphia chromosome-negative myeloproliferative neoplasms. Expert Rev. Hematol. 2014;7:255–264. doi: 10.1586/17474086.2014.876898.
    1. Madelung AB, et al. World Health Organization-defined classification of myeloproliferative neoplasms: morphological reproducibility and clinical correlations--the Danish experience. Am. J. Hematol. 2013;88:1012–1016. doi: 10.1002/ajh.23554.
    1. Gisslinger H, et al. Anagrelide compared with hydroxyurea in WHO-classified essential thrombocythemia: the ANAHYDRET Study, a randomized controlled trial. Blood. 2013;121:1720–1728. doi: 10.1182/blood-2012-07-443770.
    1. Finazzi G, et al. Incidence and risk factors for bleeding in 1104 patients with essential thrombocythemia or prefibrotic myelofibrosis diagnosed according to the 2008 WHO criteria. Leukemia. 2012;26:716–719. doi: 10.1038/leu.2011.258.
    1. Barbui T, Thiele J, Tefferi A. Myeloproliferative neoplasms. N. Engl. J. Med. 2017;377:894–895. doi: 10.1056/NEJMc1708485.
    1. Campbell PJ, et al. Definition of subtypes of essential thrombocythaemia and relation to polycythaemia vera based on JAK2 V617F mutation status: a prospective study. Lancet. 2005;366:1945–195. doi: 10.1016/S0140-6736(05)67785-9.
    1. Rumi E, et al. JAK2 or CALR mutation status defines subtypes of essential thrombocythemia with substantially different clinical course and outcomes. Blood. 2014;123:1544–1551. doi: 10.1182/blood-2013-11-539098.
    1. Tefferi A, Guglielmelli P, Larson DR, et al. Long-term survival and blast transformatioin molecularly annotated essential thrombocythemia, polycythemia vera, and myelofibrosis. Blood. 2014;124:2507–2513. doi: 10.1182/blood-2014-05-579136.
    1. Barbui T, Thiele J, Carobbio A, Vannucchi AM, Tefferi A. The rate of transformation from JAK2-mutated ET to PV is influenced by an accurate WHO-defined clinico-morphological diagnosis. Leukemia. 2015;29:992–993. doi: 10.1038/leu.2014.328.
    1. Tefferi A, et al. Calreticulin mutations and long-term survival in essential thrombocythemia. Leukemia. 2014;28:2300–2303. doi: 10.1038/leu.2014.148.
    1. Rotunno G, et al. Impact of calreticulin mutations on clinical and hematological phenotype and outcome in essential thrombocythemia. Blood. 2014;123:1552–1555. doi: 10.1182/blood-2013-11-538983.
    1. Barbui T, et al. Masked polycythemia vera (mPV): results of an international study. Am. J. Hematol. 2014;89:52–54. doi: 10.1002/ajh.23585.
    1. Vainchenker W, Kralovics R. Genetic basis and molecular pathophysiology of classical myeloproliferative neoplasms. Blood. 2017;129:667–679. doi: 10.1182/blood-2016-10-695940.
    1. Barbui T, et al. The 2016 revision of WHO classification of myeloproliferative neoplasms: clinical and molecular advances. Blood. Rev. 2016;30:453–459. doi: 10.1016/j.blre.2016.06.001.
    1. Alvarez-Larran A, et al. Masked polycythaemia vera: presenting features, response to treatment and clinical outcomes. Eur. J. Haematol. 2016;96:83–89. doi: 10.1111/ejh.12552.
    1. Barbui T, et al. Diagnostic impact of the 2016 revised WHO criteria for polycythemia vera. Am. J. Hematol. 2017;92:417–419. doi: 10.1002/ajh.24684.
    1. Lussana F, et al. A lower intensity of treatment may underlie the increased risk of thrombosis in young patients with masked polycythaemia vera. Br. J. Haematol. 2014;167:541–546. doi: 10.1111/bjh.13080.
    1. Éthier V., Sirhan S., Olney H. J., Gupta V. & Busque L. The 2016 WHO criteria for the diagnosis of Polycythemia Vera: benefits and potential risks. [e-letters]. Blood .
    1. Thiele J, Kvasnicka HM. Diagnostic impact of bone marrow histopathology in polycythemia vera (PV) Histol. Histopathol. 2005;20:317–328.
    1. Barbui T, Thiele J, Vannucchi AM, Tefferi A. Myeloproliferative neoplasms: morphology and clinical practice. Am. J. Hematol. 2016;91:430–433. doi: 10.1002/ajh.24288.
    1. Kvasnicka HM, et al. European LeukemiaNet study on the reproducibility of bone marrow features in masked polycythemia vera and differentiation from essential thrombocythemia. Am. J. Hematol. 2017;92:1062–1067. doi: 10.1002/ajh.24837.
    1. Silver RT, Chow W, Orazi A, Arles SP, Goldsmith SJ. Evaluation of WHO criteria for diagnosis of polycythemia vera: a prospective analysis. Blood. 2013;122:1881–1886. doi: 10.1182/blood-2013-06-508416.
    1. Barosi G, et al. Identifying and addressing unmet clinical needs in Ph-neg classical myeloproliferative neoplasms: a consensus-based SIE, SIES, GITMO position paper. Leuk. Res. 2014;38:155–160. doi: 10.1016/j.leukres.2013.09.008.
    1. Brousseau M, et al. Practical application and clinical impact of the WHO histopathological criteria on bone marrow biopsy for the diagnosis of essential thrombocythemia versus prefibrotic primary myelofibrosis. Histopathology. 2010;56:758–767. doi: 10.1111/j.1365-2559.2010.03545.x.
    1. Thiele J, Kvasnicka HM. Diagnostic differentiation of essential thrombocythaemia from thrombocythaemias associated with chronic idiopathic myelofibrosis by discriminate analysis of bone marrow features - a clinicopathological study on 272 patients. Histol. Histopathol. 2003;18:93–102.
    1. Thiele J, Kvasnicka HM, Diehl V. Standardization of bone marrow features - does it work in hematopathology for histological discrimination of different disease patterns? Histol. Histopathol. 2005;20:633–644.
    1. Madelung AB, et al. WHO classification 2008 of myeloproliferative neoplasms: a workshop learning effect-the Danish experience. APMIS. 2015;123:787–792. doi: 10.1111/apm.12417.
    1. Landis JR, Koch GG. The measurement of observer agreement for categorical data. Biometrics. 1977;33:159–174. doi: 10.2307/2529310.
    1. Iurlo A, Gianelli U, Cattaneo D, Thiele J, Orazi A. Impact of the 2016 revised WHO criteria for myeloproliferative neoplasms, unclassifiable: Comparison with the 2008 version. Am. J. Hematol. 2017;92:E48–E51. doi: 10.1002/ajh.24657.
    1. Rumi E, Cazzola M. Diagnosis, risk stratification, and response evaluation in classical myeloproliferative neoplasms. Blood. 2017;129:680–692. doi: 10.1182/blood-2016-10-695957.
    1. Spivak JL. Myeloproliferative neoplasms. N. Engl. J. Med. 2017;376:2168–2181. doi: 10.1056/NEJMra1406186.
    1. Thiele J, Kvasnicka HM, Diehl V. Initial (latent) polycythemia vera with thrombocytosis mimicking essential thrombocythemia. Acta Haematol. 2005;113:213–219. doi: 10.1159/000084673.
    1. Gianelli U, et al. The significance of bone marrow biopsy and JAK2V617F mutation in the differential diagnosis between the “early” prepolycythemic phase of polycythemia vera and essential thrombocythemia. Am. J. Clin. Pathol. 2008;30:336–342. doi: 10.1309/6BQ5K8LHVYAKUAF4.
    1. James C, et al. A unique clonal JAK2 mutation leading to constitutive signalling causes polycythaemia vera. Nature. 2005;434:1144–1148. doi: 10.1038/nature03546.
    1. Baxter EJ, et al. Acquired mutation of the tyrosine kinase JAK2 in human myeloproliferative disorders. Lancet. 2005;365:1054–1061. doi: 10.1016/S0140-6736(05)74230-6.
    1. Levine RL, et al. Activating mutation in the tyrosine kinase JAK2 in polycythemia vera, essential thrombocythemia, and myeloid metaplasia with myelofibrosis. Cancer Cell. 2005;7:387–397. doi: 10.1016/j.ccr.2005.03.023.
    1. Kralovics R, et al. A gain-of-function mutation of JAK2 in myeloproliferative disorders. N. Engl. J. Med. 2005;352:1779–1790. doi: 10.1056/NEJMoa051113.
    1. Scott LM, et al. JAK2 exon 12 mutations in polycythemia vera and idiopathic erythrocytosis. N. Engl. J. Med. 2007;356:459–468. doi: 10.1056/NEJMoa065202.
    1. Pikman Y, et al. MPLW515L is a novel somatic activating mutation in myelofibrosis with myeloid metaplasia. PLoS Med. 2006;3:e270. doi: 10.1371/journal.pmed.0030270.
    1. Passamonti F, et al. Molecular and clinical features of the myeloproliferative neoplasm associated with JAK2 exon 12 mutations. Blood. 2011;117:2813–2816. doi: 10.1182/blood-2010-11-316810.
    1. Ding J, et al. Familial essential thrombocythemia associated with a dominant-positive activating mutation of the c-MPL gene, which encodes for the receptor for thrombopoietin. Blood. 2004;103:4198–4200. doi: 10.1182/blood-2003-10-3471.
    1. Pardanani AD, et al. MPL515 mutations in myeloproliferative and other myeloid disorders: a study of 1182 patients. Blood. 2006;108:3472–3476. doi: 10.1182/blood-2006-04-018879.
    1. Klampfl T, et al. Somatic mutations of calreticulin in myeloproliferative neoplasms. N. Engl. J. Med. 2013;369:2379–2390. doi: 10.1056/NEJMoa1311347.
    1. Nangalia J, et al. Somatic CALR mutations in myeloproliferative neoplasms with nonmutated JAK2. N. Engl. J. Med. 2013;369:2391–2405. doi: 10.1056/NEJMoa1312542.
    1. Tefferi A, et al. The prognostic advantage of calreticulin mutations in myelofibrosis might be confined to type 1 or type 1-like CALR variants. Blood. 2014;124:2465–2466. doi: 10.1182/blood-2014-07-588426.
    1. Guglielmelli P, et al. Recommendations for molecular testing in classical Ph1-neg myeloproliferative disorders-A consensus project of the Italian Society of Hematology. Leuk. Res. 2017;58:63–72. doi: 10.1016/j.leukres.2017.04.006.
    1. McMullin MF, Cario H. LNK mutations and myeloproliferative disorders. Am. J. Hematol. 2016;91:248–251. doi: 10.1002/ajh.24259.
    1. Cabagnols X, et al. Presence of atypical thrombopoietin receptor (MPL) mutations in triple-negative essential thrombocythemia patients. Blood. 2016;127:333–342. doi: 10.1182/blood-2015-07-661983.
    1. Milosevic Feenstra JD, et al. Whole-exome sequencing identifies novel MPL and JAK2 mutations in triple-negative myeloproliferative neoplasms. Blood. 2016;127:325–332. doi: 10.1182/blood-2015-07-661835.
    1. Vannucchi AM, et al. Mutations and prognosis in primary myelofibrosis. Leukemia. 2013;27:1861–1869. doi: 10.1038/leu.2013.119.
    1. Tefferi A, et al. Targeted deep sequencing in primary myelofibrosis. Blood Adv. 2016;1:105–111. doi: 10.1182/bloodadvances.2016000208.
    1. Tefferi A, et al. Targeted deep sequencing in polycythemia vera and essential thrombocythemia. Blood Adv. 2016;1:21–30. doi: 10.1182/bloodadvances.2016000216.
    1. Zink F, et al. Clonal hematopoiesis, with and without candidate driver mutations, is common in the elderly. Blood. 2017;130:742–752. doi: 10.1182/blood-2017-02-769869.
    1. Jaiswal, S. et al Age-related clonal hematopoiesis associated with adverse outcomes. N. Engl. J. Med. 371, 2488–2498 (2014).
    1. Xie M, et al. Age-related mutations associated with clonal hematopoietic expansion and malignancies. Nat. Med. 2014;20:1472–1478. doi: 10.1038/nm.3733.
    1. Busque L, et al. Laboratory investigation of myeloproliferative neoplasms (MPNs): recommendations of the Canadian MPN Group. Am. J. Clin. Pathol. 2016;146:408–422. doi: 10.1093/ajcp/aqw131.
    1. Sandes AF, Gonçalves MV, Chauffaille ML. Frequency of polycythemia in individuals with normal complete blood cell counts according to the new 2016 WHO classification of myeloid neoplasms. Int. J. Lab. Hematol. 2017;39:528–531. doi: 10.1111/ijlh.12686.
    1. Barbui T, et al. Discriminating between essential thrombocythemia and masked polycythemia vera in JAK2 mutated patients. Am. J. Hematol. 2014;89:588–590. doi: 10.1002/ajh.23694.
    1. Marchioli R, et al. CYTO-PV Collaborative Group. Cardiovascular events and intensity of treatment in polycythemia vera. N. Engl. J. Med. 2013;368:22–33. doi: 10.1056/NEJMoa1208500.
    1. Tefferi A, Barbui T. Polycythemia vera and essential thrombocythemia: 2017 update on diagnosis, risk-stratification, and management. Am. J. Hematol. 2017;92:94–108. doi: 10.1002/ajh.24607.
    1. Thiele J, et al. Primary (essential) thrombocythemia versus initial (hyperplastic) stages of agnogenic myeloid metaplasia with thrombocytosis--a critical evaluation of clinical and histomorphological data. Acta Haematol. 1989;81:192–202. doi: 10.1159/000205560.
    1. Thiele J, et al. Initial (prefibrotic) stages of idiopathic (primary) myelofibrosis (IMF) - a clinicopathological study. Leukemia. 1999;13:1741–1748. doi: 10.1038/sj.leu.2401553.
    1. Florena AM, et al. Value of bone marrow biopsy in the diagnosis of essential thrombocythemia. Haematologica. 2004;89:911–919.
    1. Gianelli U, et al. Essential thrombocythemia or chronic idiopathic myelofibrosis? A single-center study based on hematopoietic bone marrow histology. Leuk. Lymphoma. 2006;47:1774–1781. doi: 10.1080/10428190600678975.
    1. Barosi G, et al. Evidence that prefibrotic myelofibrosis is aligned along a clinical and biological continuum featuring primary myelofibrosis. PLoS ONE. 2012;7:e35631. doi: 10.1371/journal.pone.0035631.
    1. Gisslinger H. Pre-PMF emerging as important subgroup of MPN. Blood. 2017;129:3142–3144. doi: 10.1182/blood-2017-04-777805.
    1. Mudireddy M. et al. Prefibrotic versus overtly fibrotic primary myelofibrosis: clinical, cytogenetic, molecular and prognostic comparisons. Br J Haematol (2017). 10.1111/bjh.14838. [Epub ahead of print]
    1. Reilly JT, et al. Use of JAK inhibitors in the management of myelofibrosis: a revision of the British Committee for Standards in Haematology Guidelines for Investigation and Management of Myelofibrosis 2012. Br. J. Haematol. 2014;167:418–420. doi: 10.1111/bjh.12985.
    1. Thiele J, et al. European consensus on grading bone marrow fibrosis and assessment of cellularity. Haematologica. 2005;90:1128–1132.
    1. Kvasnicka HM, et al. Problems and pitfalls in grading of bone marrow fibrosis, collagen deposition and osteosclerosis - a consensus-based study. Histopathology. 2016;68:905–915. doi: 10.1111/his.12871.
    1. Geissler K, et al. Circulating hematopoietic progenitor cells in essential thrombocythemia versus prefibrotic/early primary myelofibrosis. Am. J. Hematol. 2014;89:1157–1158. doi: 10.1002/ajh.23829.
    1. Carobbio A, et al. Blood tests may predict early primary myelofibrosis in patients presenting with essential thrombocythemia. Am. J. Hematol. 2012;87:203–204. doi: 10.1002/ajh.22241.
    1. Schalling M, et al. Essential thrombocythemia versus prefibrotic/early primary myelofibrosis: discrimination by laboratory and clinical data. Blood Cancer J. 2017;7:643–647. doi: 10.1038/s41408-017-0006-y.
    1. Kvasnicka HM. WHO classification of myeloproliferative neoplasms (MPN): A critical update. Curr. Hematol. Malign. Rep. 2013;8:333–341. doi: 10.1007/s11899-013-0186-x.
    1. Kvasnicka HM, Thiele J. The impact of clinicopathological studies on staging and survival in essential thrombocythemia, chronic idiopathic myelofibrosis and polycythemia rubra vera. Semin. Thromb. Hemost. 2006;32:362–371. doi: 10.1055/s-2006-942757.
    1. Ejerblad E, et al. Diagnosis according to World Health Organization determines the long-term prognosis in patients with myeloproliferative neoplasms treated with anagrelide: results of a prospective long-term follow-up. Hematology. 2013;18:8–13. doi: 10.1179/1607845412Y.0000000023.
    1. Harrison CN, et al. Hydroxyurea compared with anagrelide in high-risk essential thrombocythemia. N. Engl. J. Med. 2005;353:33–45. doi: 10.1056/NEJMoa043800.
    1. Bain BJ. Bone marrow biopsy morbidity: review of 2003. J. Clin. Pathol. 2005;58:406–408. doi: 10.1136/jcp.2004.022178.
    1. Barosi G, et al. Proposed criteria for the diagnosis of post-polycythemia vera and post-essential thrombocythemia myelofibrosis: a consensus statement from the International Working Group for Myelofibrosis Research and Treatment. Leukemia. 2008;22:437–438. doi: 10.1038/sj.leu.2404914.
    1. Abdulkarim K, et al. The impact of peripheral blood values and bone marrow findings on prognosis for patients with essential thrombocythemia and polycythemia vera. Eur. J. Haematol. 2011;86:148–155. doi: 10.1111/j.1600-0609.2010.01548.x.
    1. Tang G, et al. Characteristics and clinical significance of cytogenetic abnormalities in polycythemia vera. Haematologica. 2017;102:1511–1518. doi: 10.3324/haematol.2017.165795.
    1. Barbui T, et al. Initial bone marrow reticulin fibrosis in polycythemia vera exerts an impact on clinical outcome. Blood. 2012;119:2239–2241. doi: 10.1182/blood-2011-11-393819.
    1. Barraco D, et al. Prognostic impact of bone marrow fibrosis in polycythemia vera: validation of the IWG-MRT study and additional observations. Blood Cancer J. 2017;7:e538. doi: 10.1038/bcj.2017.17.
    1. Thiele J, et al. Polycythemia rubra vera versus secondary polycythemias. A clinicopathological evaluation of distinctive features in 199 patients. Pathol. Res. Pract. 2001;197:77–84. doi: 10.1078/0344-0338-5710013.
    1. Barbui T, Thiele J, Vannucchi AM, Tefferi A. Rationale for revision and proposed changes of the WHO diagnostic criteria for polycythemia vera,essential thrombocythemia and primary myelofibrosis. Blood Cancer J. 2015;5:e337. doi: 10.1038/bcj.2015.64.
    1. Thiele J, Kvasnicka HM. Grade of bone marrow fibrosis is associated with relevant hematological findings—a clinicopathological study on 865 patients with chronic idiopathic myelofibrosis. Ann. Hematol. 2006;85:226–232. doi: 10.1007/s00277-005-0042-8.
    1. Vener C, et al. Prognostic implications of the European consensus for grading of bone marrow fibrosis in chronic idiopathic myelofibrosis. Blood. 2008;111:1862–1865. doi: 10.1182/blood-2007-09-112953.
    1. Alvarez-Larran A, et al. WHO-histological criteria for myeloproliferative neoplasms: reproducibility, diagnostic accuracy and correlation with gene mutations and clinical outcomes. Br. J. Haematol. 2014;166:911–919. doi: 10.1111/bjh.12990.
    1. Gianelli U, et al. The myeloproliferative neoplasms, unclassifiable: clinical and pathological considerations. Mod. Pathol. 2017;30:169–179. doi: 10.1038/modpathol.2016.182.
    1. Broséus J, Park JH, Carillo S, Hermouet S, Girodon F. Presence of calreticulin mutations in JAK2-negative polycythemia vera. Blood. 2014;124:3964–3966. doi: 10.1182/blood-2014-06-583161.
    1. Pozdnyakova O, et al. The importance of central pathology review in international trials: a comparison of local versus central bone marrow reticulin grading. Leukemia. 2015;29:241–244. doi: 10.1038/leu.2014.262.
    1. Tefferi A, et al. Survival and prognosis among 1,545 patients with contemporary polycythemia vera: an international study. Leukemia. 2013;27:1874–188. doi: 10.1038/leu.2013.163.

Source: PubMed

3
订阅