Single-Channel EEG Features Reveal an Association With Cognitive Decline in Seniors Performing Auditory Cognitive Assessment

Lior Molcho, Neta B Maimon, Noa Regev-Plotnik, Sarit Rabinowicz, Nathan Intrator, Ady Sasson, Lior Molcho, Neta B Maimon, Noa Regev-Plotnik, Sarit Rabinowicz, Nathan Intrator, Ady Sasson

Abstract

Background: Cognitive decline remains highly underdiagnosed despite efforts to find novel cognitive biomarkers. Electroencephalography (EEG) features based on machine-learning (ML) may offer a non-invasive, low-cost approach for identifying cognitive decline. However, most studies use cumbersome multi-electrode systems. This study aims to evaluate the ability to assess cognitive states using machine learning (ML)-based EEG features extracted from a single-channel EEG with an auditory cognitive assessment.

Methods: This study included data collected from senior participants in different cognitive states (60) and healthy controls (22), performing an auditory cognitive assessment while being recorded with a single-channel EEG. Mini-Mental State Examination (MMSE) scores were used to designate groups, with cutoff scores of 24 and 27. EEG data processing included wavelet-packet decomposition and ML to extract EEG features. Data analysis included Pearson correlations and generalized linear mixed-models on several EEG variables: Delta and Theta frequency-bands and three ML-based EEG features: VC9, ST4, and A0, previously extracted from a different dataset and showed association with cognitive load.

Results: MMSE scores significantly correlated with reaction times and EEG features A0 and ST4. The features also showed significant separation between study groups: A0 separated between the MMSE < 24 and MMSE ≥ 28 groups, in addition to separating between young participants and senior groups. ST4 differentiated between the MMSE < 24 group and all other groups (MMSE 24-27, MMSE ≥ 28 and healthy young groups), showing sensitivity to subtle changes in cognitive states. EEG features Theta, Delta, A0, and VC9 showed increased activity with higher cognitive load levels, present only in the healthy young group, indicating different activity patterns between young and senior participants in different cognitive states. Consisted with previous reports, this association was most prominent for VC9 which significantly separated between all level of cognitive load.

Discussion: This study successfully demonstrated the ability to assess cognitive states with an easy-to-use single-channel EEG using an auditory cognitive assessment. The short set-up time and novel ML features enable objective and easy assessment of cognitive states. Future studies should explore the potential usefulness of this tool for characterizing changes in EEG patterns of cognitive decline over time, for detection of cognitive decline on a large scale in every clinic to potentially allow early intervention.

Trial registration: NIH Clinical Trials Registry [https://ichgcp.net/clinical-trials-registry/NCT04386902], identifier [NCT04386902]; Israeli Ministry of Health registry [https://my.health.gov.il/CliniTrials/Pages/MOH_2019-10-07_007352.aspx], identifier [007352].

Keywords: EEG (electroencephalography); brain activity; cognitive assessment; cognitive decline; cognitive impairment; machine learning (ML); mini-mental state examination (MMSE); wavelet packet.

Conflict of interest statement

LM, NM, and NI have equity interest in Neurosteer, which developed the Neurosteer system. The remaining authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Copyright © 2022 Molcho, Maimon, Regev-Plotnik, Rabinowicz, Intrator and Sasson.

Figures

FIGURE 1
FIGURE 1
An example of six trials of detection level 1 (Top) and detection level 2 (Bottom). Both examples show a “trumpet block” in which the participant reacts to the trumpet melody. Red icons represent trials in which the participant was required to respond with a click when hearing the melody, indicating a “yes” response.
FIGURE 2
FIGURE 2
Study design and groups at each stage. The study included both seniors and young healthy participants as controls. For the senior participants, an MMSE score was obtained, and division into groups was based on the individual MMSE score.
FIGURE 3
FIGURE 3
Pearson correlation between individual mean reaction times (RTs) and individual MMSE scores, as a function of task level: detection 1 (purple) and detection 2 (red).
FIGURE 4
FIGURE 4
Pearson correlation between individual MMSE scores and (A) EEG frequency bands Delta and Theta, and (B) EEG features A0, ST4, and VC9, as a function of task level: resting state (blue), detection level 1 (purple), and detection level 2 (red).
FIGURE 5
FIGURE 5
The distributions of groups (MMSE (A) Delta and Theta; (B) A0, ST4 and VC9; and (C) reaction times (RTs), as a function of task: resting-state (blue), detection level 1 (purple), and detection level 2 (red).

References

    1. Ahmadlou M., Adeli H., Adeli A. (2010). New diagnostic EEG markers of the Alzheimer’s disease using visibility graph. J. Neural Transm. 117 1099–1109. 10.1007/s00702-010-0450-3
    1. Albert M. S., DeKosky S. T., Dickson D., Dubois B., Feldman H. H., Fox N. C., et al. (2011). The diagnosis of mild cognitive impairment due to Alzheimer’s disease: recommendations from the National Institute on Aging-Alzheimer’s Association workgroups on diagnostic guidelines for Alzheimer’s disease. Alzheimers Dement. 7 270–279. 10.1016/j.jalz.2011.03.008
    1. Amezquita-Sanchez J. P., Mammone N., Morabito F. C., Marino S., Adeli H. (2019). A novel methodology for automated differential diagnosis of mild cognitive impairment and the Alzheimer’s disease using EEG signals. J. Neurosci. Methods 322 88–95. 10.1016/j.jneumeth.2019.04.013
    1. Antonenko P., Paas F., Grabner R., van Gog T. (2010). Using electroencephalography to measure cognitive load. Educ. Psychol. Rev. 22 425–438. 10.1007/s10648-010-9130-y
    1. Babiloni C., Binetti G., Cassetta E., Cerboneschi D., Dal Forno G., Del Percio C., et al. (2004). Mapping distributed sources of cortical rhythms in mild Alzheimer’s disease. A multicentric EEG study. Neuroimage 22 57–67. 10.1016/j.neuroimage.2003.09.028
    1. Bates D. M., Maechler M., Bolker B., Walker S. (2015). lme4: linear mixed-effects models using S4 classes. J. Stat. Softw. 67 1–48.
    1. Berti S., Schröger E. (2001). A comparison of auditory and visual distraction effects: behavioral and event-related indices. Cogn. Brain Res. 10 265–273. 10.1016/S0926-6410(00)00044-6
    1. Bibina V. C., Chakraborty U., Regeena M. L., Kumar A. (2018). Signal processing methods of diagnosing Alzheimer’s disease using EEG a technical review. Int. J. Biol. Biomed. Eng. 12.
    1. Bolton F., Te’Eni D., Maimon N. B., Toch E. (2021). “Detecting interruption events using EEG,” in Proceedings of the 3rd Global Conference on Life Sciences and Technologies (LifeTech) (Nara: IEEE; ), 33–34.
    1. Brayne C., Beardsall L. (1990). Estimation of verbal intelligence in an elderly community: an epidemiological study using NART. Br. J. Clin. Psychol. 29 217–223. 10.1111/j.2044-8260.1990.tb00872.x
    1. Cassani R., Estarellas M., San-Martin R., Fraga F. J., Falk T. H. (2018). Systematic review on resting-state EEG for Alzheimer’s disease diagnosis and progression assessment. Dis. Mark. 2018:5174815. 10.1155/2018/5174815
    1. Cassani R., Falk T. H., Fraga F. J., Cecchi M., Moore D. K., Anghinah R. (2017). Towards automated electroencephalography-based Alzheimer’s disease diagnosis using portable low-density devices. Biomed. Signal Process. Control 33 261–271. 10.1016/j.bspc.2016.12.009
    1. Chapman K. R., Bing-Canar H., Alosco M. L., Steinberg E. G., Martin B., Chaisson C., et al. (2016). Mini mental state examination and logical memory scores for entry into Alzheimer’s disease trials. Alzheimers Res. Ther. 8 8–9. 10.1186/s13195-016-0176-z
    1. Choi H., Jin K. H. (2018). Predicting cognitive decline with deep learning of brain metabolism and amyloid imaging. Behav. Brain Res. 344 103–109. 10.1016/j.bbr.2018.02.017
    1. Choi J., Ku B., You Y. G., Jo M., Kwon M., Choi Y., et al. (2019). Resting-state prefrontal EEG biomarkers in correlation with MMSE scores in elderly individuals. Sci. Rep. 9:10468. 10.1038/s41598-019-46789-2
    1. Cichocki A., Shishkin S. L., Musha T., Leonowicz Z., Asada T., Kurachi T. (2005). EEG filtering based on blind source separation (BSS) for early detection of Alzheimer’s disease. Clin. Neurophysiol. 116 729–737. 10.1016/j.clinph.2004.09.017
    1. Cnaan A., Laird N. M., Slasor P. (1997). Using the general linear mixed model to analyse unbalanced repeated measures and longitudinal data. Stat. Med. 16 2349–2380.
    1. Coifman R. R., Donoho D. L. (1995). “Translation-invariant de-noising,” in Wavelets and Statistics. Lecture Notes in Statistics, Vol. 103 eds Antoniadis A., Oppenheim G. (New York, NY: Springer; ). 10.1007/978-1-4612-2544-7_9
    1. Coifman R. R., Wickerhauser M. V. (1992). Entropy-based algorithms for best basis selection. IEEE Trans. Inf. Theory 38 713–718. 10.1109/18.119732
    1. Cordell C. B., Borson S., Boustani M., Chodosh J., Reuben D., Verghese J., et al. (2013). Alzheimer’s association recommendations for operationalizing the detection of cognitive impairment during the medicare annual wellness visit in a primary care setting. Alzheimers Dement. 9 141–150. 10.1016/j.jalz.2012.09.011
    1. Crum R. M., Anthony J. C., Bassett S. S., Folstein M. F. (1993). Population-based norms for the mini-mental state examination by age and educational level. JAMA J. Am. Med. Assoc. 269 2386–2391. 10.1001/jama.1993.03500180078038
    1. Dauwels J., Vialatte F., Cichocki A. (2010a). Diagnosis of Alzheimer’s disease from EEG signals: where are we standing? Curr. Alzheimer Res. 7 487–505. 10.2174/1567210204558652050
    1. Dauwels J., Vialatte F., Musha T., Cichocki A. (2010b). A comparative study of synchrony measures for the early diagnosis of Alzheimer’s disease based on EEG. Neuroimage 49 668–693. 10.1016/j.neuroimage.2009.06.056
    1. Debener S., Makeig S., Delorme A., Engel A. K. (2005). What is novel in the novelty oddball paradigm? Functional significance of the novelty P3 event-related potential as revealed by independent component analysis. Cogn. Brain Res. 22 309–321. 10.1016/j.cogbrainres.2004.09.006
    1. Deiber M. P., Ibañez V., Missonnier P., Herrmann F., Fazio-Costa L., Gold G., et al. (2009). Abnormal-induced theta activity supports early directed-attention network deficits in progressive MCI. Neurobiol. Aging 30 1444–1452. 10.1016/j.neurobiolaging.2007.11.021
    1. Deiber M. P., Meziane H. B., Hasler R., Rodriguez C., Toma S., Ackermann M., et al. (2015). Attention and working memory-related EEG markers of subtle cognitive deterioration in healthy elderly individuals. J. Alzheimers Dis. 47 335–349. 10.3233/JAD-150111
    1. Diedenhofen B., Musch J. (2015). Cocor: a comprehensive solution for the statistical comparison of correlations. PLoS One 10:e0121945. 10.1371/journal.pone.0121945
    1. Doan D. N. T., Ku B., Choi J., Oh M., Kim K., Cha W., et al. (2021). Predicting dementia with prefrontal electroencephalography and event-related potential. Front. Aging Neurosci. 13:659817. 10.3389/fnagi.2021.659817
    1. Dunn O. J., Clark V. (1969). Correlation coefficients measured on the same individuals. J. Am. Stat. Assoc. 64 366–377. 10.1080/01621459.1969.10500981
    1. Edelman S., Intrator N. (2000). (Coarse coding of shape fragments)+(retinotopy)≈representation of structure. Spat. Vis. 13, 2–3. 10.1163/156856800741072
    1. Efron B., Tibshirani R. J. (1993). An Introduction to the Bootstrap - CRC Press Book. London: Chapman and Hall.
    1. Farina F. R., Emek-Savaş D. D., Rueda-Delgado L., Boyle R., Kiiski H., Yener G., et al. (2020). A comparison of resting state EEG and structural MRI for classifying Alzheimer’s disease and mild cognitive impairment. Neuroimage 15:116795. 10.1016/j.neuroimage.2020.116795
    1. Fell J., Dietl T., Grunwald T., Kurthen M., Klaver P., Trautner P., et al. (2004). Neural bases of cognitive ERPs: more than phase reset. J. Cogn. Neurosci. 16 1595–1604. 10.1162/0898929042568514
    1. Folstein M. F., Folstein S. E., McHugh P. R. (1975). Mini-mental state’. A practical method for grading the cognitive state of patients for the clinician. J. Psychiatr. Res. 12 189–198. 10.1016/0022-3956(75)90026-6
    1. Galimberti D., Scarpini E. (2011). Disease-modifying treatments for Alzheimer’s disease. Ther. Adv. Neurol. Disord. 4 203–216. 10.1177/1756285611404470
    1. Ghorbanian P., Devilbiss D. M., Verma A., Bernstein A., Hess T., Simon A. J., et al. (2013). Identification of resting and active state EEG features of Alzheimer’s disease using discrete wavelet transform. Ann. Biomed. Eng. 41 1243–1257. 10.1007/s10439-013-0795-5
    1. Hadjichrysanthou C., Evans S., Bajaj S., Siakallis L. C., McRae-McKee K., de Wolf F., et al. (2020). The dynamics of biomarkers across the clinical spectrum of Alzheimer’s disease. Alzheimers Res. Ther. 12:74. 10.1186/s13195-020-00636-z
    1. Hastie T., Buja A., Tibshirani R. (2007). Penalized discriminant analysis. Ann. Stat. 23 73–102. 10.1214/aos/1176324456
    1. Hebert L. E., Weuve J., Scherr P. A., Evans D. A. (2013). Alzheimer disease in the United States (2010-2050) estimated using the 2010 census. Neurology 80 1778–1783. 10.1212/WNL.0b013e31828726f5
    1. Herrmann C. S., Strüber D., Helfrich R. F., Engel A. K. (2016). EEG oscillations: from correlation to causality. Int. J. Psychophysiol. 103 12–21. 10.1016/j.ijpsycho.2015.02.003
    1. Hoseini Z., Nazari M., Lee K. S., Chung H. (2021). Current feedback instrumentation amplifier with built-in differential electrode offset cancellation loop for ECG/EEG sensing frontend. IEEE Trans. Instrum. Meas. 70:2001911. 10.1109/TIM.2020.3031205
    1. Hubel D. H., Wiesel T. N. (1962). Receptive fields, binocular interaction and functional architecture in the cat’s visual cortex. J. Physiol. 160, 106–154. 10.1113/jphysiol.1962.sp006837
    1. Intrator N. (2018). Systems and methods for brain activity interpretation. U.S. Patent No 2,016,023,535,1A1. Washington, DC: U.S. Patent and Trademark Office.
    1. Intrator N. (2019). Systems and methods for analyzing brain activity and applications thereof. U.S. Patent No 2,017,034,790,6A1. Washington, DC: U.S. Patent and Trademark Office.
    1. Jack C. R., Jr., Albert M. S., Knopman D. S., McKhann G. M., Sperling R. A., Carrillo M. C., et al. (2011). Introduction to revised criteria for the diagnosis of Alzheimer’s disease: national institute on aging and the Alzheimer association workgroups. Alzheimer Dement. 7 257–262. 10.1016/j.jalz.2011.03.004.Introduction
    1. Jensen O., Tesche C. D. (2002). Frontal theta activity in humans increases with memory load in a working memory task. Eur. J. Neurosci. 15 1395–1399. 10.1046/j.1460-9568.2002.01975.x
    1. Jeong J. (2004). EEG dynamics in patients with Alzheimer’s disease. Clin. Neurophysiol. 115 1490–1505. 10.1016/j.clinph.2004.01.001
    1. Kashefpoor M., Rabbani H., Barekatain M. (2016). Automatic diagnosis of mild cognitive impairment using electroencephalogram spectral features. J. Med. Signals Sens. 6 25–32. 10.4103/2228-7477.175869
    1. Khatun S., Morshed B. I., Bidelman G. M. (2019). A single-channel EEG-based approach to detect mild cognitive impairment via speech-evoked brain responses. IEEE Trans. Neural Syst. Rehabil. Eng. 27 1063–1070. 10.1109/TNSRE.2019.2911970
    1. Lang L., Clifford A., Wei L., Zhang D., Leung D., Augustine G., et al. (2017). Prevalence and determinants of undetected dementia in the community: a systematic literature review and a meta-analysis. BMJ Open 7:e011146. 10.1136/bmjopen-2016-011146
    1. Lehmann C., Koenig T., Jelic V., Prichep L., John R. E., Wahlund L. O., et al. (2007). Application and comparison of classification algorithms for recognition of Alzheimer’s disease in electrical brain activity (EEG). J. Neurosci. Methods 161 342–350. 10.1016/j.jneumeth.2006.10.023
    1. López M. M., Ramírez J., Górriz J. M., Alvarez I., Salas-Gonzalez D., Segovia F., et al. (2009). SVM-based CAD system for early detection of the Alzheimer’s disease using kernel PCA and LDA. Neurosci. Lett. 464 233–238. 10.1016/j.neulet.2009.08.061
    1. Lv J. Y., Wang T., Qiu J., Feng S. H., Tu S., Wei D. T. (2010). The electrophysiological effect of working memory load on involuntary attention in an auditory-visual distraction paradigm: an ERP study. Exp. Brain Res. 205 81–86. 10.1007/s00221-010-2360-x
    1. Maimon N. B., Bez M., Drobot D., Molcho L., Intrator N., Kakiashvilli E., et al. (2021). Continuous monitoring of mental load during virtual simulator training for laparoscopic surgery reflects laparoscopic dexterity. A comparative study using a novel wireless device. Front. Neurosci. 15:694010. 10.3389/fnins.2021.694010
    1. Maimon N. B., Molcho L., Intrator N., Lamy D. (2020). Single-channel EEG features during n-back task correlate with working memory load. arXiv [Preprint] 10.48550/arXiv.2008.04987
    1. Maimon N. B., Molcho L., Jaul E., Intrator N., Barron J., Meiron O. (2022). “EEG reactivity changes captured via mobile BCI device following tDCS intervention–a pilot-study in disorders of consciousness (DOC) patients,” in Proceedings of the 10th International Winter Conference on Brain-Computer Interface (BCI) (Gangwon-do: IEEE; ), 1–3.
    1. Makeig S., Westerfield M., Jung T. P., Enghoff S., Townsend J., Courchesne E., et al. (2002). Dynamic brain sources of visual evoked responses. Science 295 690–694. 10.1126/science.1066168
    1. Mateos-Pérez J. M., Dadar M., Lacalle-Aurioles M., Iturria-Medina Y., Zeighami Y., Evans A. C. (2018). Structural neuroimaging as clinical predictor: a review of machine learning applications. Neuroimage Clin. 20 506–522. 10.1016/j.nicl.2018.08.019
    1. Maxime H. (2017). RVAideMemoire: Diverse Basic Statistical and Graphical Functions,” R package 0.9-57. Available Online at: .
    1. Meghdadi A. H., Stevanović Karić M., McConnell M., Rupp G., Richard C., Hamilton J., et al. (2021). Resting state EEG biomarkers of cognitive decline associated with Alzheimer’s disease and mild cognitive impairment. PLoS One 16:e0244180. 10.1371/journal.pone.0244180
    1. Melissant C., Ypma A., Frietman E. E. E., Stam C. J. (2005). A method for detection of Alzheimer’s disease using ICA-enhanced EEG measurements. Artif. Intell. Med. 33 209–222. 10.1016/j.artmed.2004.07.003
    1. Meng X. L., Rosenthal R., Rubin D. B. (1992). Comparing correlated correlation coefficients. Psychol. Bull. 111 172–175. 10.1037/0033-2909.111.1.172
    1. Missonnier P., Deiber M. P., Gold G., Herrmann F. R., Millet P., Michon A., et al. (2007). Working memory load-related electroencephalographic parameters can differentiate progressive from stable mild cognitive impairment. Neuroscience 150 346–356. 10.1016/j.neuroscience.2007.09.009
    1. Moretti D. V., Frisoni G. B., Fracassi C., Pievani M., Geroldi C., Binetti G., et al. (2011). MCI patients’ EEGs show group differences between those who progress and those who do not progress to AD. Neurobiol. Aging 32 563–571. 10.1016/j.neurobiolaging.2009.04.003
    1. Morris J. C. (1993). The clinical dementia rating (cdr): current version and scoring rules. Neurology 43 1588–1592. 10.1212/wnl.43.11.2412-a
    1. Neretti N., Intrator N. (2002). “An adaptive approach to wavelet filters design,” in Proceedings of the Neural Networks for Signal Processing IEEE Workshop, Bangalore, 317–326. 10.1109/NNSP.2002.1030043
    1. Nimmy John T., Subha Dharmapalan P., Ramshekhar Menon N. (2019). Exploration of time-frequency reassignment and homologous inter-hemispheric asymmetry analysis of MCI-AD brain activity. BMC Neuroscience 20:38. 10.1186/s12868-019-0519-3
    1. O’Bryant S. E., Humphreys J. D., Smith G. E., Ivnik R. J., Graff-Radford N. R., Petersen R. C., et al. (2008). Detecting dementia with the mini-mental state examination in highly educated individuals. Arch. Neurol. 65 963–967. 10.1001/archneur.65.7.963
    1. Paitel E. R., Samii M. R., Nielson K. A. (2021). A systematic review of cognitive event-related potentials in mild cognitive impairment and Alzheimer’s disease. Behav. Brain Res. 396:112904. 10.1016/j.bbr.2020.112904
    1. Petersen R. C. (2004). Mild cognitive impairment as a diagnostic entity. J. Intern. Med. 256 183–194. 10.1111/j.1365-2796.2004.01388.x
    1. Plassman B. L., Williams J. W., Jr., Burke J. R., Holsinger T., Benjamin S. (2010). Systematic review: factors associated with risk for and possible prevention of cognitive decline in later life. Ann. Intern. Med. 153 182–193. 10.7326/0003-4819-153-3-201008030-00258
    1. Popp F., Dallmer-Zerbe I., Philipsen A., Herrmann C. S. (2019). Challenges of P300 modulation using Transcranial Alternating Current Stimulation (tACS). Front. Psychol. 10:476. 10.3389/fpsyg.2019.00476
    1. Pritchard W. S., Duke D. W., Coburn K. L., Moore N. C., Tucker K. A., Jann M. W., et al. (1994). EEG-based, neural-net predictive classification of Alzheimer’s disease versus control subjects is augmented by non-linear EEG measures. Electroencephalogr. Clin. Neurophysiol. 91 118–130. 10.1016/0013-4694(94)90033-7
    1. Qiu C., Kivipelto M., von Strauss E. (2009). Epidemiology of Alzheimer’s disease: occurrence, determinants, and strategies toward intervention. Dialogues Clin. Neurosci. 11 111–128. 10.31887/DCNS.2009.11.2/cqiu
    1. Ritchie K., Touchon J. (2000). Mild cognitive impairment: conceptual basis and current nosological status. Lancet 15 225–228. 10.1016/S0140-6736(99)06155-3
    1. Rizk-Jackson A., Insel P., Petersen R., Aisen P., Jack C., Weiner M. (2013). Early indications of future cognitive decline: stable versus declining controls. PLoS One 8:e74062. 10.1371/journal.pone.0074062
    1. Rokhlin V., Szlam A., Tygert M. (2009). A randomized algorithm for principal component analysis. SIAM J. Matrix Anal. Appl. 31 1100–1124. 10.1137/080736417
    1. RStudio Team (2020). RStudio: Integrated Development for R. Boston, MA: RStudio.
    1. Schapkin I., Raggatz S. A., Hillmert J., Böckelmann M. (2020). EEG correlates of cognitive load in a multiple choice reaction task. Acta Neurobiol. 80 76–89.
    1. Scheeringa R., Petersson K. M., Oostenveld R., Norris D. G., Hagoort P., Bastiaansen M. C. M. (2009). Trial-by-trial coupling between EEG and BOLD identifies networks related to alpha and theta EEG power increases during working memory maintenance. Neuroimage 44 1224–1238. 10.1016/j.neuroimage.2008.08.041
    1. Shiroky J. S., Schipper H. M., Bergman H., Chertkow H. (2007). Can you have dementia with an MMSE score of 30? Am. J. Alzheimers Dis. Dement. 22 406–415. 10.1177/1533317507304744
    1. Silverberg N. B., Ryan L. M., Carrillo M. C., Sperling R., Petersen R. C., Posner H. B., et al. (2011). Assessment of cognition in early dementia. Alzheimers Dement. 7 e60–e76. 10.1016/j.jalz.2011.05.001
    1. Sweller J. (2011). “Cognitive load theory,” in Psychology of Learning and Motivation, Vol. 55 eds Mestre J. P., Ross B. H. (London: Academic Press; ).
    1. Tervaniemi M., Kujala A., Alho K., Virtanen J., Ilmoniemi R. J., Näätänen R. (1999). Functional specialization of the human auditory cortex in processing phonetic and musical sounds: a magnetoencephalographic (MEG) study. Neuroimage 9 330–336. 10.1006/nimg.1999.0405
    1. Tombaugh T. N., McIntyre N. J. (1992). The mini-mental state examination: a comprehensive review. J. Am. Geriatr. Soc. 40 922–935. 10.1111/j.1532-5415.1992.tb01992.x
    1. Urigüen J. A., Garcia-Zapirain B. (2015). EEG artifact removal - State-of-the-art and guidelines. J. Neural Eng. 12:031001. 10.1088/1741-2560/12/3/031001
    1. van der Flier W. M., Scheltens P. (2005). Epidemiology and risk factors of dementia. Neurol. Pract. 76(Suppl. 5), v2–v7. 10.1136/jnnp.2005.082867
    1. Vlahou E. L., Thurm F., Kolassa I. T., Schlee W. (2014). Resting-state slow wave power, healthy aging and cognitive performance. Sci. Rep. 4:5101. 10.1038/srep05101

Source: PubMed

3
订阅