Rationale and design of the allogeneiC human mesenchymal stem cells (hMSC) in patients with aging fRAilTy via intravenoUS delivery (CRATUS) study: A phase I/II, randomized, blinded and placebo controlled trial to evaluate the safety and potential efficacy of allogeneic human mesenchymal stem cell infusion in patients with aging frailty

Samuel Golpanian, Darcy L DiFede, Marietsy V Pujol, Maureen H Lowery, Silvina Levis-Dusseau, Bradley J Goldstein, Ivonne H Schulman, Bangon Longsomboon, Ariel Wolf, Aisha Khan, Alan W Heldman, Pascal J Goldschmidt-Clermont, Joshua M Hare, Samuel Golpanian, Darcy L DiFede, Marietsy V Pujol, Maureen H Lowery, Silvina Levis-Dusseau, Bradley J Goldstein, Ivonne H Schulman, Bangon Longsomboon, Ariel Wolf, Aisha Khan, Alan W Heldman, Pascal J Goldschmidt-Clermont, Joshua M Hare

Abstract

Frailty is a syndrome associated with reduced physiological reserves that increases an individual's vulnerability for developing increased morbidity and/or mortality. While most clinical trials have focused on exercise, nutrition, pharmacologic agents, or a multifactorial approach for the prevention and attenuation of frailty, none have studied the use of cell-based therapies. We hypothesize that the application of allogeneic human mesenchymal stem cells (allo-hMSCs) as a therapeutic agent for individuals with frailty is safe and efficacious. The CRATUS trial comprises an initial non-blinded phase I study, followed by a blinded, randomized phase I/II study (with an optional follow-up phase) that will address the safety and pre-specified beneficial effects in patients with the aging frailty syndrome. In the initial phase I protocol, allo-hMSCs will be administered in escalating doses via peripheral intravenous infusion (n=15) to patients allocated to three treatment groups: Group 1 (n=5, 20 million allo-hMSCs), Group 2 (n=5, 100 million allo-hMSCs), and Group 3 (n=5, 200 million allo-hMSCs). Subsequently, in the randomized phase, allo-hMSCs or matched placebo will be administered to patients (n=30) randomly allocated in a 1:1:1 ratio to one of two doses of MSCs versus placebo: Group A (n=10, 100 million allo-hMSCs), Group B (n=10, 200 million allo-hMSCs), and Group C (n=10, placebo). Primary and secondary objectives are, respectively, to demonstrate the safety and efficacy of allo-hMSCs administered in frail older individuals. This study will determine the safety of intravenous infusion of stem cells and compare phenotypic outcomes in patients with aging frailty.

Keywords: Gerotarget; aging; allogeneic; frailty; mesenchymal stem cells.

Conflict of interest statement

CONFLICTS OF INTEREST

Drs. Hare reports equity interest in Longeveron and Vestion.

Figures

Figure 1. Peripheral intravenous administration of allogeneic…
Figure 1. Peripheral intravenous administration of allogeneic MSCs via systemic circulation
Figure 2. Systemic inflammation
Figure 2. Systemic inflammation
A. Areas in red color depict widespread inflammation. B. MSCs migrate to regions of injury and exert their anti-inflammatory properties (green color).
Figure 3. MSC effects on organ systems
Figure 3. MSC effects on organ systems
MSCs target various tissues throughout the body to help enhance cardiac reserve (heart), improve endothelial function (blood vessels), reduce inflammation (diffusely and in joints), and increase bone density (bone) and muscle tone (skeletal muscle) through pro-regenerative effects (i.e., paracrine signaling, mitochondrial transfer, exosomes).

References

    1. Morley JE, Vellas B, van Kan GA, Anker SD, Bauer JM, Bernabei R, Cesari M, Chumlea WC, Doehner W, Evans J, Fried LP, Guralnik JM, Katz PR, Malmstrom TK, McCarter RJ, Gutierrez Robledo LM, et al. Frailty consensus: a call to action. J Am Med Dir Assoc. 2013;14:392–397.
    1. Oude Voshaar RC, Benraad C, Olde Rikkert M.G.M. Kwetsbaarheid, complexiteit en welbevinden bij ouderen. In: Leentjes A. GROB, Schols J.M.G.A, et al., editors. Handboek Multidisciplinaire Zorg. Utrecht: De Tijdstroom; 2010. pp. 43–62.
    1. Collard RM, Boter H, Schoevers RA, Oude Voshaar RC. Prevalence of frailty in community-dwelling older persons: a systematic review. J Am Geriatr Soc. 2012;60:1487–1492.
    1. Cerreta F, Eichler HG, Rasi G. Drug policy for an aging population--the European Medicines Agency's geriatric medicines strategy. N Engl J Med. 2012;367:1972–1974.
    1. Hare JM, Traverse JH, Henry TD, Dib N, Strumpf RK, Schulman SP, Gerstenblith G, DeMaria AN, Denktas AE, Gammon RS, Hermiller JB, Jr, Reisman MA, Schaer GL, Sherman W. A randomized, double-blind, placebo-controlled, dose-escalation study of intravenous adult human mesenchymal stem cells (prochymal) after acute myocardial infarction. J Am Coll Cardiol. 2009;54:2277–2286.
    1. Hare JM, Fishman JE, Gerstenblith G, DiFede Velazquez DL, Zambrano JP, Suncion VY, Tracy M, Ghersin E, Johnston PV, Brinker JA, Breton E, Davis-Sproul J, Schulman IH, Byrnes J, Mendizabal AM, Lowery MH, et al. Comparison of allogeneic vs autologous bone marrow-derived mesenchymal stem cells delivered by transendocardial injection in patients with ischemic cardiomyopathy: the POSEIDON randomized trial. JAMA. 2012;308:2369–2379.
    1. Weiss DJ, Casaburi R, Flannery R, LeRoux-Williams M, Tashkin DP. A placebo-controlled, randomized trial of mesenchymal stem cells in COPD. Chest. 2013;143:1590–1598.
    1. Wright E. 2008-based national population projections for the United Kingdom and constituent countries. Popul Trends. 2010;(139):91–114.
    1. Fried LP, Tangen CM, Walston J, Newman AB, Hirsch C, Gottdiener J, Seeman T, Tracy R, Kop WJ, Burke G, McBurnie MA, Cardiovascular Health Study Collaborative Research G Frailty in older adults: evidence for a phenotype. J Gerontol A Biol Sci Med Sci. 2001;56:M146–156.
    1. Rockwood K, Mitnitski A. Frailty defined by deficit accumulation and geriatric medicine defined by frailty. Clin Geriatr Med. 2011;27:17–26.
    1. Sieliwonczyk E, Perkisas S, Vandewoude M. Frailty indexes, screening instruments and their application in Belgian primary care. Acta Clin Belg. 2014;69:233–239.
    1. Laksmi PW. Frailty syndrome: an emerging geriatric syndrome calling for its potential intervention. Acta Med Indones. 2014;46:173–174.
    1. Clegg A, Young J, Iliffe S, Rikkert MO, Rockwood K. Frailty in elderly people. Lancet. 2013;381:752–762.
    1. Song X, Mitnitski A, Rockwood K. Prevalence and 10-year outcomes of frailty in older adults in relation to deficit accumulation. J Am Geriatr Soc. 2010;58:681–687.
    1. Rockwood K, Hogan DB, MacKnight C. Conceptualisation and measurement of frailty in elderly people. Drugs Aging. 2000;17:295–302.
    1. Lopez-Otin C, Blasco MA, Partridge L, Serrano M, Kroemer G. The hallmarks of aging. Cell. 2013;153:1194–1217.
    1. Fedarko NS. The biology of aging and frailty. Clin Geriatr Med. 2011;27:27–37.
    1. Lowry KA, Vallejo AN, Studenski SA. Successful aging as a continuum of functional independence: lessons from physical disability models of aging. Aging Dis. 2012;3:5–15.
    1. Ershler WB, Keller ET. Age-associated increased interleukin-6 gene expression, late-life diseases, and frailty. Annu Rev Med. 2000;51:245–270.
    1. Leng S, Chaves P, Koenig K, Walston J. Serum interleukin-6 and hemoglobin as physiological correlates in the geriatric syndrome of frailty: a pilot study. J Am Geriatr Soc. 2002;50:1268–1271.
    1. Leng SX, Cappola AR, Andersen RE, Blackman MR, Koenig K, Blair M, Walston JD. Serum levels of insulin-like growth factor-I (IGF-I) and dehydroepiandrosterone sulfate (DHEA-S), and their relationships with serum interleukin-6, in the geriatric syndrome of frailty. Aging Clin Exp Res. 2004;16:153–157.
    1. Leng SX, Xue QL, Tian J, Walston JD, Fried LP. Inflammation and frailty in older women. J Am Geriatr Soc. 2007;55:864–871.
    1. Walston J, Hadley EC, Ferrucci L, Guralnik JM, Newman AB, Studenski SA, Ershler WB, Harris T, Fried LP. Research agenda for frailty in older adults: toward a better understanding of physiology and etiology: summary from the American Geriatrics Society/National Institute on Aging Research Conference on Frailty in Older Adults. J Am Geriatr Soc. 2006;54:991–1001.
    1. Peters LL, Boter H, Buskens E, Slaets JP. Measurement properties of the Groningen Frailty Indicator in home-dwelling and institutionalized elderly people. J Am Med Dir Assoc. 2012;13:546–551.
    1. Gobbens RJ, van Assen MA, Luijkx KG, Wijnen-Sponselee MT, Schols JM. The Tilburg Frailty Indicator: psychometric properties. J Am Med Dir Assoc. 2010;11:344–355.
    1. Rockwood K, Song X, MacKnight C, Bergman H, Hogan DB, McDowell I, Mitnitski A. A global clinical measure of fitness and frailty in elderly people. CMAJ. 2005;173:489–495.
    1. Garrett DD, Tuokko H, Stajduhar KI, Lindsay J, Buehler S. Planning for end-of-life care: findings from the Canadian Study of Health and Aging. Can J Aging. 2008;27:11–21.
    1. Chan DC, Tsou HH, Chen CY, Chen CY. Validation of the Chinese-Canadian study of health and aging clinical frailty scale (CSHA-CFS) telephone version. Arch Gerontol Geriatr. 2010;50:e74–80.
    1. Conroy S, Dowsing T. The ability of frailty to predict outcomes in older people attending an acute medical unit. Acute Med. 2013;12:74–76.
    1. Martocchia A, Frugoni P, Indiano I, Tafaro L, Comite F, Amici A, Cacciafesta M, Marigliano V, Falaschi P. Screening of frailty in elderly patients with disability by the means of Marigliano-Cacciafesta polypathology scale (MCPS) and Canadian Study of Health and Aging (CSHA) scales. Arch Gerontol Geriatr. 2013;56:339–342.
    1. Matusik P, Tomaszewski K, Chmielowska K, Nowak J, Nowak W, Parnicka A, Dubiel M, Gasowski J, Grodzicki T. Severe frailty and cognitive impairment are related to higher mortality in 12-month follow-up of nursing home residents. Arch Gerontol Geriatr. 2012;55:22–24.
    1. Groessl EJ, Kaplan RM, Rejeski WJ, Katula JA, King AC, Frierson G, Glynn NW, Hsu FC, Walkup M, Pahor M. Health-related quality of life in older adults at risk for disability. Am J Prev Med. 2007;33:214–218.
    1. Fried TR, Bradley EH, Williams CS, Tinetti ME. Functional disability and health care expenditures for older persons. Arch Intern Med. 2001;161:2602–2607.
    1. Gill TM, Gahbauer EA, Allore HG, Han L. Transitions between frailty states among community-living older persons. Arch Intern Med. 2006;166:418–423.
    1. Ferrucci L, Guralnik JM, Studenski S, Fried LP, Cutler GB, Jr, Walston JD, Interventions on Frailty Working G Designing randomized, controlled trials aimed at preventing or delaying functional decline and disability in frail, older persons: a consensus report. J Am Geriatr Soc. 2004;52:625–634.
    1. Aleman-Mateo H, Macias L, Esparza-Romero J, Astiazaran-Garcia H, Blancas AL. Physiological effects beyond the significant gain in muscle mass in sarcopenic elderly men: evidence from a randomized clinical trial using a protein-rich food. Clin Interv Aging. 2012;7:225–234.
    1. Cesari M, Vellas B, Hsu FC, Newman AB, Doss H, King AC, Manini TM, Church T, Gill TM, Miller ME, Pahor M, Group LS. A Physical Activity Intervention to Treat the Frailty Syndrome in Older Persons-Results From the LIFE-P Study. J Gerontol A Biol Sci Med Sci. 2015;70:216–222.
    1. Fairhall N, Sherrington C, Kurrle SE, Lord SR, Lockwood K, Howard K, Hayes A, Monaghan N, Langron C, Aggar C, Cameron ID. Economic evaluation of a multifactorial, interdisciplinary intervention versus usual care to reduce frailty in frail older people. J Am Med Dir Assoc. 2015;16(1):41–48.
    1. Drey M, Zech A, Freiberger E, Bertsch T, Uter W, Sieber CC, Pfeifer K, Bauer JM. Effects of strength training versus power training on physical performance in prefrail community-dwelling older adults. Gerontology. 2012;58:197–204.
    1. Faes MC, Reelick MF, Melis RJ, Borm GF, Esselink RA, Rikkert MG. Multifactorial fall prevention for pairs of frail community-dwelling older fallers and their informal caregivers: a dead end for complex interventions in the frailest fallers. J Am Med Dir Assoc. 2011;12:451–458.
    1. Peterson MJ, Sloane R, Cohen HJ, Crowley GM, Pieper CF, Morey MC. Effect of telephone exercise counseling on frailty in older veterans: project LIFE. Am J Mens Health. 2007;1:326–334.
    1. Solerte SB, Gazzaruso C, Bonacasa R, Rondanelli M, Zamboni M, Basso C, Locatelli E, Schifino N, Giustina A, Fioravanti M. Nutritional supplements with oral amino acid mixtures increases whole-body lean mass and insulin sensitivity in elderly subjects with sarcopenia. Am J Cardiol. 2008;101:69E–77E.
    1. Tieland M, Dirks ML, van der Zwaluw N, Verdijk LB, van de Rest O, de Groot LC, van Loon LJ. Protein supplementation increases muscle mass gain during prolonged resistance-type exercise training in frail elderly people: a randomized, double-blind, placebo-controlled trial. J Am Med Dir Assoc. 2012;13:713–719.
    1. Muller M, van den Beld AW, van der Schouw YT, Grobbee DE, Lamberts SW. Effects of dehydroepiandrosterone and atamestane supplementation on frailty in elderly men. J Clin Endocrinol Metab. 2006;91:3988–3991.
    1. Li CM, Chen CY, Li CY, Wang WD, Wu SC. The effectiveness of a comprehensive geriatric assessment intervention program for frailty in community-dwelling older people: a randomized, controlled trial. Arch Gerontol Geriatr. 2010;50(Suppl 1):S39–42.
    1. Sanina C, Hare JM. Mesenchymal Stem Cells as a Biological Drug for Heart Disease: Where Are We With Cardiac Cell-Based Therapy? Circ Res. 2015;117:229–233.
    1. Karantalis V, Schulman IH, Balkan W, Hare JM. Allogeneic cell therapy: a new paradigm in therapeutics. Circ Res. 2015;116:12–15.
    1. Leal A, Ichim TE, Marleau AM, Lara F, Kaushal S, Riordan NH. Immune effects of mesenchymal stem cells: implications for Charcot-Marie-Tooth disease. Cell Immunol. 2008;253:11–15.
    1. Lee RH, Seo MJ, Reger RL, Spees JL, Pulin AA, Olson SD, Prockop DJ. Multipotent stromal cells from human marrow home to and promote repair of pancreatic islets and renal glomeruli in diabetic NOD/scid mice. Proc Natl Acad Sci U S A. 2006;103:17438–17443.
    1. Nemeth K, Leelahavanichkul A, Yuen PS, Mayer B, Parmelee A, Doi K, Robey PG, Leelahavanichkul K, Koller BH, Brown JM, Hu X, Jelinek I, Star RA, Mezey E. Bone marrow stromal cells attenuate sepsis via prostaglandin E(2)-dependent reprogramming of host macrophages to increase their interleukin-10 production. Nat Med. 2009;15:42–49.
    1. Parekkadan B, van Poll D, Suganuma K, Carter EA, Berthiaume F, Tilles AW, Yarmush ML. Mesenchymal stem cell-derived molecules reverse fulminant hepatic failure. PLoS One. 2007;2:e941.
    1. Raggi C, Berardi AC. Mesenchymal stem cells, aging and regenerative medicine. Muscles Ligaments Tendons J. 2012;2:239–242.
    1. Prasad VK, Lucas KG, Kleiner GI, Talano JA, Jacobsohn D, Broadwater G, Monroy R, Kurtzberg J. Efficacy and safety of ex vivo cultured adult human mesenchymal stem cells (Prochymal) in pediatric patients with severe refractory acute graft-versus-host disease in a compassionate use study. Biol Blood Marrow Transplant. 2011;17:534–541.
    1. Patel AN, Genovese J. Potential clinical applications of adult human mesenchymal stem cell (Prochymal(R)) therapy. Stem Cells Cloning. 2011;4:61–72.
    1. Premer C, Blum A, Bellio MA, Schulman IH, Hurwitz BE, Parker M, Dermarkarian CR, DiFede DL, Balkan W, Khan A, Hare JM. Allogeneic Mesenchymal Stem Cells Restore Endothelial Function in Heart Failure by Stimulating Endothelial Progenitor Cells. EBioMedicine. 2015;2:467–475.
    1. Hare JM, Bolli R, Cooke JP, Gordon DJ, Henry TD, Perin EC, March KL, Murphy MP, Pepine CJ, Simari RD, Skarlatos SI, Traverse JH, Willerson JT, Szady AD, Taylor DA, Vojvodic RW, et al. Phase II clinical research design in cardiology: learning the right lessons too well: observations and recommendations from the Cardiovascular Cell Therapy Research Network (CCTRN) Circulation. 2013;127:1630–1635.

Source: PubMed

3
订阅