Allogeneic Mesenchymal Stem Cells Ameliorate Aging Frailty: A Phase II Randomized, Double-Blind, Placebo-Controlled Clinical Trial

Bryon A Tompkins, Darcy L DiFede, Aisha Khan, Ana Marie Landin, Ivonne Hernandez Schulman, Marietsy V Pujol, Alan W Heldman, Roberto Miki, Pascal J Goldschmidt-Clermont, Bradley J Goldstein, Muzammil Mushtaq, Silvina Levis-Dusseau, John J Byrnes, Maureen Lowery, Makoto Natsumeda, Cindy Delgado, Russell Saltzman, Mayra Vidro-Casiano, Moisaniel Da Fonseca, Samuel Golpanian, Courtney Premer, Audrey Medina, Krystalenia Valasaki, Victoria Florea, Erica Anderson, Jill El-Khorazaty, Adam Mendizabal, Geoff Green, Anthony A Oliva, Joshua M Hare, Bryon A Tompkins, Darcy L DiFede, Aisha Khan, Ana Marie Landin, Ivonne Hernandez Schulman, Marietsy V Pujol, Alan W Heldman, Roberto Miki, Pascal J Goldschmidt-Clermont, Bradley J Goldstein, Muzammil Mushtaq, Silvina Levis-Dusseau, John J Byrnes, Maureen Lowery, Makoto Natsumeda, Cindy Delgado, Russell Saltzman, Mayra Vidro-Casiano, Moisaniel Da Fonseca, Samuel Golpanian, Courtney Premer, Audrey Medina, Krystalenia Valasaki, Victoria Florea, Erica Anderson, Jill El-Khorazaty, Adam Mendizabal, Geoff Green, Anthony A Oliva, Joshua M Hare

Abstract

Background: Aging frailty, characterized by decreased physical and immunological functioning, is associated with stem cell depletion. Human allogeneic mesenchymal stem cells (allo-hMSCs) exert immunomodulatory effects and promote tissue repair.

Methods: This is a randomized, double-blinded, dose-finding study of intravenous allo-hMSCs (100 or 200-million [M]) vs placebo delivered to patients (n = 30, mean age 75.5 ± 7.3) with frailty. The primary endpoint was incidence of treatment-emergent serious adverse events (TE-SAEs) at 1-month postinfusion. Secondary endpoints included physical performance, patient-reported outcomes, and immune markers of frailty measured at 6 months postinfusion.

Results: No therapy-related TE-SAEs occurred at 1 month. Physical performance improved preferentially in the 100M-group; immunologic improvement occurred in both the 100M- and 200M-groups. The 6-minute walk test, short physical performance exam, and forced expiratory volume in 1 second improved in the 100M-group (p = .01), not in the 200M- or placebo groups. The female sexual quality of life questionnaire improved in the 100M-group (p = .03). Serum TNF-α levels decreased in the 100M-group (p = .03). B cell intracellular TNF-α improved in both the 100M- (p < .0001) and 200M-groups (p = .002) as well as between groups compared to placebo (p = .003 and p = .039, respectively). Early and late activated T-cells were also reduced by MSC therapy.

Conclusion: Intravenous allo-hMSCs were safe in individuals with aging frailty. Treated groups had remarkable improvements in physical performance measures and inflammatory biomarkers, both of which characterize the frailty syndrome. Given the excellent safety and efficacy profiles demonstrated in this study, larger clinical trials are warranted to establish the efficacy of hMSCs in this multisystem disorder.

Clinical trial registration: www.clinicaltrials.gov: CRATUS (#NCT02065245).

Keywords: Immunomodulation; Regenerative medicine; Tumor necrosis factor-α.

© The Author 2017. Published by Oxford University Press on behalf of The Gerontological Society of America.

Figures

Figure 1.
Figure 1.
Study flow chart. Patient screening, follow-up, and randomization in a 1:1:1 fashion to either the 100M-group, 200M-group, or placebo. M = Million.
Figure 2.
Figure 2.
Physical markers of frailty. (A) Six-minute walk test (6MWT) increased in mean meters walked in the 100M-group from baseline to 6 months (p = .011) but not the 200M-group (p = .263) or placebo (p = .112). (B) Short physical performance battery (SPPB) was significant for an overall improvement in the median total score in the 100M-group from baseline to 6 months (p = .031) but not in the 200M-group (p = .812) or placebo (p = .875). (C) Community Healthy Activities Model Program for Seniors (CHAMPS) questionnaire was significant for a reduced median total caloric expenditure per week at moderate intensity from baseline to 6 months in the 200M-group (p = .008) and placebo (p = .039), but not in the 100M-group (p = .641). (D) Forced expiratory volume after 1 second (FEV1) improved in mean liters from baseline to 6 months in the 100M-group (p = .025) without changes noted in the 200M-group (p = .259) or placebo (p = .883). * indicates p ≤ .05.
Figure 3.
Figure 3.
Immune biomarkers in frailty. All time points are from baseline to 6 months except for TNF-α which begins on Day 1 (infusion) through 6 months. (A) Early T-cell activation (CD3, CD69) were reduced as a percent change from baseline to 6 months in the 200M-group (p = .004), but not the 100M-group (p = .269) or placebo (p = .0797). (B) Late T-cell activation (CD3, CD25) was reduced as a percent change from baseline to 6 months in the 100M and 200M-groups (p = .007 and p = .048 respectively), but not in the placebo (p = .119). (C) % CD8 T-cells decreased from baseline to 6 months in the 200M-group (p = .022) and no changes were noted in the 100M-group (p = .978) or placebo (p = .0797). (D) CD4/CD8 ratio increased from baseline to 6 months in the 200M-group (p = .014) and no changes were found in the 100M-group (p = .609) or placebo (p = .104). (E) Serum TNF-α decreased in pg/mL from baseline to 6 months in the 100M-group (p = .031) without a change in the 200M-group (p = .129) or placebo (p = .094). (F) %B cells expressing intracellular TNF-α decreased from baseline to 6 months in the 100M (p < .0001) and 200M-groups (p = .002) without a significant change in placebo (p = .869). * indicates p ≤ .05.
Figure 4.
Figure 4.
Sexual quality of life-female (SQOL-F) questionnaire. There was a mean increase in the 100M-group (p = .0348) from baseline to 6 months as compared to the 200M-group (p = .882) and placebo (p = .941). * indicates p ≤ .05.

References

    1. Walston J, Hadley EC, Ferrucci L et al. . Research agenda for frailty in older adults: toward a better understanding of physiology and etiology: summary from the American Geriatrics Society/National Institute on Aging Research Conference on Frailty in Older Adults. J Am Geriatr Soc. 2006;54:991–1001. doi:10.1111/j.1532-5415.2006.00745.x
    1. Clegg A, Young J, Iliffe S, Rikkert MO, Rockwood K. Frailty in elderly people. Lancet. 2013;381:752–762. doi:10.1016/S0140-6736(12)62167-9
    1. Song X, Mitnitski A, Rockwood K. Prevalence and 10-year outcomes of frailty in older adults in relation to deficit accumulation. J Am Geriatr Soc. 2010;58:681–687. doi:10.1111/j.1532-5415.2010.02764.x
    1. López-Otín C, Blasco MA, Partridge L, Serrano M, Kroemer G. The hallmarks of aging. Cell. 2013;153:1194–1217. doi:10.1016/j.cell.2013.05.039
    1. Ahmed AS, Sheng MH, Wasnik S, Baylink DJ, Lau KW. Effect of aging on stem cells. World J Exp Med. 2017;7:1–10. doi:10.5493/wjem.v7.i1.1
    1. Cerreta F, Eichler HG, Rasi G. Drug policy for an aging population–the European Medicines Agency’s geriatric medicines strategy. N Engl J Med. 2012;367:1972–1974. doi:10.1056/NEJMp1209034
    1. Morley JE, Vellas B, van Kan GA et al. . Frailty consensus: a call to action. J Am Med Dir Assoc. 2013;14:392–397. doi:10.1016/j.jamda.2013.03.022
    1. Rockwood K, Mitnitski A. Frailty defined by deficit accumulation and geriatric medicine defined by frailty. Clin Geriatr Med. 2011;27:17–26. doi:10.1016/j.cger.2010.08.008
    1. Fried LP, Ferrucci L, Darer J, Williamson JD, Anderson G. Untangling the concepts of disability, frailty, and comorbidity: implications for improved targeting and care. J Gerontol A Biol Sci Med Sci. 2004;59:255–263. doi:10.1093/gerona/59.3.M255
    1. Fried LP, Tangen CM, Walston J et al. ; Cardiovascular Health Study Collaborative Research Group. Frailty in older adults: evidence for a phenotype. J Gerontol A Biol Sci Med Sci. 2001;56:M146–M156. doi:10.1093/gerona/56.3.M146
    1. Collard RM, Boter H, Schoevers RA, Oude Voshaar RC. Prevalence of frailty in community-dwelling older persons: a systematic review. J Am Geriatr Soc. 2012;60:1487–1492. doi:10.1111/ j.1532-5415.2012.04054.x
    1. Xue QL. The frailty syndrome: definition and natural history. Clin Geriatr Med. 2011;27:1–15. doi:10.1016/j.cger.2010.08.009
    1. Tompkins BA, Landin AM, Florea V, Natsumeda M, Reiger AC, Balkan W, Schulman IH, Hare JM. Allogeneic Mesenchymal Stem Cells as a Treatment for Aging Frailty. In: Frailty and Sarcopenia - Onset, Development and Clinical Challenges, Yannis Dionyssiotis (ed), InTech, Rijeka, 2017.
    1. Peffers MJ, Collins J, Loughlin J, Proctor C, Clegg PD. A proteomic analysis of chondrogenic, osteogenic and tenogenic constructs from ageing mesenchymal stem cells. Stem Cell Res Ther. 2016;7:133. doi:10.1186/s13287-016-0384-2
    1. Sethe S, Scutt A, Stolzing A. Aging of mesenchymal stem cells. Ageing Res Rev. 2006;5:91–116. doi:10.1016/j.arr.2005.10.001
    1. Stolzing A, Jones E, McGonagle D, Scutt A. Age-related changes in human bone marrow-derived mesenchymal stem cells: consequences for cell therapies. Mech Ageing Dev. 2008;129:163–173. doi:10.1016/j.mad.2007.12.002
    1. Golpanian S, DiFede DL, Khan A et al. . Allogeneic human mesenchymal stem cell infusions for aging frailty. Epub ahead of print. J Gerontol A Biol Sci Med Sci. 2017. doi:10.1093/gerona/glx056
    1. Hare JM, Traverse JH, Henry TD et al. . A randomized, double-blind, placebo-controlled, dose-escalation study of intravenous adult human mesenchymal stem cells (prochymal) after acute myocardial infarction. J Am Coll Cardiol. 2009;54:2277–2286. doi:10.1016/j.jacc.2009.06.055
    1. Hare JM, Fishman JE, Gerstenblith G et al. . Comparison of allogeneic vs autologous bone marrow-derived mesenchymal stem cells delivered by transendocardial injection in patients with ischemic cardiomyopathy: the POSEIDON randomized trial. JAMA 2012;308:2369–2379. doi:10.1001/jama.2012.25321
    1. Hare JM, DiFede DL, Rieger AC et al. . Randomized comparison of allogeneic versus autologous mesenchymal stem cells for nonischemic dilated cardiomyopathy: POSEIDON-DCM trial. J Am Coll Cardiol. 2017;69:526–537. doi:10.1016/j.jacc.2016.11.009
    1. Premer C, Blum A, Bellio MA et al. . Allogeneic mesenchymal stem cells restore endothelial function in heart failure by stimulating endothelial progenitor cells. EBioMedicine. 2015;2:467–475. doi:10.1016/j.ebiom.2015.03.020
    1. Weiss DJ, Casaburi R, Flannery R, LeRoux-Williams M, Tashkin DP. A placebo-controlled, randomized trial of mesenchymal stem cells in COPD. Chest. 2013;143:1590–1598. doi:10.1378/chest.12-2094
    1. Karantalis V, Hare JM. Use of mesenchymal stem cells for therapy of cardiac disease. Circ Res. 2015;116:1413–1430. doi:10.1161/circresaha.116.303614
    1. Hatzistergos KE, Quevedo H, Oskouei BN et al. . Bone marrow mesenchymal stem cells stimulate cardiac stem cell proliferation and differentiation. Circ Res. 2010;107:913–922. doi:10.1161/circresaha.110.222703
    1. Rockwood K, Song X, MacKnight C et al. . A global clinical measure of fitness and frailty in elderly people. CMAJ. 2005;173:489–495. doi:10.1503/cmaj.050051
    1. Golpanian S, DiFede DL, Pujol MV et al. . Rationale and design of the allogeneiC human mesenchymal stem cells (hMSC) in patients with aging fRAilTy via intravenoUS delivery (CRATUS) study: a phase I/II, randomized, blinded and placebo controlled trial to evaluate the safety and potential efficacy of allogeneic human mesenchymal stem cell infusion in patients with aging frailty. Oncotarget. 2016;7:11899–11912. doi:10.18632/oncotarget.7727
    1. Ritt M, Ritt JI, Sieber CC, Gaßmann KG. Comparing the predictive accuracy of frailty, comorbidity, and disability for mortality: a 1-year follow-up in patients hospitalized in geriatric wards. Clin Interv Aging. 2017;12:293–304. doi:10.2147/CIA.S124342
    1. Koller K, Rockwood K. Frailty in older adults: implications for end-of-life care. Cleve Clin J Med. 2013;80:168–174. doi:10.3949/ccjm.80a.12100
    1. McElhaney JE, Effros RB. Immunosenescence: what does it mean to health outcomes in older adults? Curr Opin Immunol. 2009;21:418–424. doi:10.1016/j.coi.2009.05.023
    1. Kawamoto A, Katayama M, Handa N et al. . Intramuscular transplantation of G-CSF-mobilized CD34(+) cells in patients with critical limb ischemia: a phase I/IIa, multicenter, single-blinded, dose-escalation clinical trial. Stem Cells. 2009;27:2857–2864. doi:10.1002/stem.207
    1. Golpanian S, Schulman IH, Ebert RF et al. ; Cardiovascular Cell Therapy Research Network. Concise review: review and perspective of cell dosage and routes of administration from preclinical and clinical studies of stem cell therapy for heart disease. Stem Cells Transl Med. 2016;5:186–191. doi:10.5966/sctm.2015-0101
    1. Hamamoto H, Gorman JH 3rd, Ryan LP et al. . Allogeneic mesenchymal precursor cell therapy to limit remodeling after myocardial infarction: the effect of cell dosage. Ann Thorac Surg. 2009;87:794–801. doi:10.1016/j.athoracsur.2008.11.057
    1. Schuleri KH, Feigenbaum GS, Centola M et al. . Autologous mesenchymal stem cells produce reverse remodelling in chronic ischaemic cardiomyopathy. Eur Heart J. 2009;30:2722–2732. doi:10.1093/eurheartj/ehp265
    1. Siddiqi S, Sussman MA. Cell and gene therapy for severe heart failure patients: the time and place for Pim-1 kinase. Expert Rev Cardiovasc Ther. 2013;11:949–957. doi:10.1586/14779072.2013.814830
    1. Madonna R, Van Laake LW, Davidson SM et al. . Position paper of the European Society of Cardiology Working Group Cellular Biology of the Heart: cell-based therapies for myocardial repair and regeneration in ischemic heart disease and heart failure. Eur Heart J. 2016;37:1789–1798. doi:10.1093/eurheartj/ehw113
    1. ATS Committee on Proficiency Standards for Clinical Pulmonary Function Laboratories. ATS statement: guidelines for the six-minute walk test. Am J Respir Crit Care Med. 2002;166:111–117. doi:10.1164/ajrccm.166.1.at1102
    1. Enright PL, McBurnie MA, Bittner V et al. ; Cardiovascular Health Study. The 6-min walk test: a quick measure of functional status in elderly adults. Chest. 2003;123:387–398. doi:10.1378/chest.123.2.387
    1. Guralnik JM, Ferrucci L, Pieper CF et al. . Lower extremity function and subsequent disability: consistency across studies, predictive models, and value of gait speed alone compared with the short physical performance battery. J Gerontol A Biol Sci Med Sci. 2000;55:M221–M231. doi:10.1093/gerona/55.4.M221
    1. Stewart AL, Mills KM, King AC, Haskell WL, Gillis D, Ritter PL. CHAMPS physical activity questionnaire for older adults: outcomes for interventions. Med Sci Sports Exerc. 2001;33:1126–1141.
    1. Mak S, Soicher JE, Mayo NE, Wood-Dauphinee S, Bourbeau J. Cross-cultural adaptation of the CHAMPS questionnaire in French Canadians with COPD. Can Respir J. 2016;2016:9304505. doi:10.1155/2016/9304505
    1. Goldstein I, Kim NN, Clayton AH et al. . Hypoactive sexual desire disorder: International Society for the Study of Women’s Sexual Health (ISSWSH) Expert Consensus Panel Review. Mayo Clin Proc. 2017;92:114–128. doi:10.1016/j.mayocp.2016.09.018
    1. de Gonzalo-Calvo D, Neitzert K, Fernández M et al. . Differential inflammatory responses in aging and disease: TNF-alpha and IL-6 as possible biomarkers. Free Radic Biol Med. 2010;49:733–737. doi:10.1016/j.freeradbiomed.2010.05.019
    1. Kanapuru B, Ershler WB. Inflammation, coagulation, and the pathway to frailty. Am J Med. 2009;122:605–613. doi:10.1016/j.amjmed.2009.01.030
    1. Bruunsgaard H, Andersen-Ranberg K, Hjelmborg Jv, Pedersen BK, Jeune B. Elevated levels of tumor necrosis factor alpha and mortality in centenarians. Am J Med. 2003;115:278–283. doi:10.1016/S0002-9343(03)00329-2
    1. Perico N, Casiraghi F, Gotti E et al. . Mesenchymal stromal cells and kidney transplantation: pretransplant infusion protects from graft dysfunction while fostering immunoregulation. Transpl Int. 2013;26:867–878. doi:10.1111/tri.12132
    1. Golpanian S, Wolf A, Hatzistergos KE, Hare JM. Rebuilding the damaged heart: mesenchymal stem cells, cell-based therapy, and engineered heart tissue. Physiol Rev. 2016;96:1127–1168. doi:10.1152/physrev.00019.2015
    1. Rando TA, Wyss-Coray T. Stem cells as vehicles for youthful regeneration of aged tissues. J Gerontol A Biol Sci Med Sci. 2014;69(suppl 1):S39–S42. doi:10.1093/gerona/glu043
    1. Raggi C, Berardi AC. Mesenchymal stem cells, aging and regenerative medicine. Muscles Ligaments Tendons J. 2012;2:239–242.
    1. Ershler WB, Keller ET. Age-associated increased interleukin-6 gene expression, late-life diseases, and frailty. Annu Rev Med. 2000;51:245–270. doi:10.1146/annurev.med.51.1.245

Source: PubMed

3
订阅