Efficacy of repetitive transcranial magnetic stimulation combined with visual scanning treatment on cognitive and behavioral symptoms of left hemispatial neglect in right hemispheric stroke patients: study protocol for a randomized controlled trial

Francesco Di Gregorio, Fabio La Porta, Emanuela Casanova, Elisabetta Magni, Roberta Bonora, Maria Grazia Ercolino, Valeria Petrone, Maria Rosaria Leo, Roberto Piperno, Francesco Di Gregorio, Fabio La Porta, Emanuela Casanova, Elisabetta Magni, Roberta Bonora, Maria Grazia Ercolino, Valeria Petrone, Maria Rosaria Leo, Roberto Piperno

Abstract

Background: Left hemispatial neglect (LHN) is a neuropsychological syndrome often associated with right hemispheric stroke. Patients with LHN have difficulties in attending, responding, and consciously representing the right side of space. Various rehabilitation protocols have been proposed to reduce clinical symptoms related to LHN, using cognitive treatments, or on non-invasive brain stimulation. However, evidence of their benefit is still lacking; in particular, only a few studies focused on the efficacy of combining different approaches in the same patient.

Methods: In the present study, we present the SMART ATLAS trial (Stimolazione MAgnetica Ripetitiva Transcranica nell'ATtenzione LAteralizzata dopo Stroke), a multicenter, randomized, controlled trial with pre-test (baseline), post-test, and 12 weeks follow-up assessments based on a novel rehabilitation protocol based on the combination of brain stimulation and standard cognitive treatment. In particular, we will compare the efficacy of inhibitory repetitive-transcranial magnetic stimulation (r-TMS), applied over the left intact parietal cortex of LHN patients, followed by visual scanning treatment, in comparison with a placebo stimulation (SHAM control) followed by the same visual scanning treatment, on visuospatial symptoms and neurophysiological parameters of LHN in a population of stroke patients.

Discussion: Our trial results may provide scientific evidence of a new, relatively low-cost rehabilitation protocol for the treatment of LHN.

Trial registration: ClinicalTrials.gov NCT04080999 . Registered on September 2019.

Keywords: Brain pathology; Brain physiology; Functional laterality; Randomized controlled trial; Stroke rehabilitation methods; Transcranial magnetic stimulation.

Conflict of interest statement

Authors declare no competing interests.

Figures

Fig. 1
Fig. 1
Study flowchart. r-TMS, repetitive transcranial magnetic stimulation; VS, visual scanning
Fig. 2
Fig. 2
Visual detection task. Each trial starts with a central fixation cross for a jittered time between 640 and 960 milliseconds (ms), then a stimulus is presented randomly either on the left or on the right of the fixation cross for 96 ms. After stimulus presentation, a fixation cross remains for 1000 ms, and then a new trial starts

References

    1. Corbetta M, Kincade MJ, Lewis C, Snyder AZ, AS Neural basis and recovery of spatial attention deficits in spatial neglect. Nat Neurosci. 2005;8(11):1603–1610.
    1. Di Monaco M, Schintu S, Dotta M, Barba S, Tappero R, Gindri P. Severity of unilateral spatial neglect is an independent predictor of functional outcome after acute inpatient rehabilitation in individuals with right hemispheric stroke. Arch Phys Med Rehabil. 2011;92(8):1250–1256.
    1. Gammeri R, Iacono C, Ricci R, Salatino A. Unilateral spatial neglect after stroke: current insights. Neuropsychiatr Dis Treat. 2020;16:131–152.
    1. Lisa LP, Jughters A, Kerckhofs E. The effectiveness of different treatment modalities for the rehabilitation of unilateral neglect in stroke patients: a systematic review. NeuroRehabilitation. 2013;33(4):611–20.
    1. Oliveri M. Brain stimulation procedures for treatment of contralesional spatial neglect. Restor Neurol Neurosci. 2011:421–5.
    1. Katz N, Hartman-Maeir A, Ring H, Soroker N. Functional disability and rehabilitation outcome in right hemisphere damaged patients with and without unilateral spatial neglect. Arch Phys Med Rehabil. 1999;80(4):379–84.
    1. Di Russo F, Bozzacchi C, Matano A, Spinelli D. Hemispheric differences in VEPs to lateralised stimuli are a marker of recovery from neglect. Cortex. 2013;49(4):931–9. 10.1016/j.cortex.2012.04.017.
    1. Di Russo F, Aprile T, Spitoni G, Spinelli D. Impaired visual processing of contralesional stimuli in neglect patients: a visual-evoked potential study. Brain. 2008;131(3):842–54.
    1. Dietz MJ, Friston KJ, Mattingley JB, Roepstorff A, Garrido MI. Effective connectivity reveals right-hemisphere dominance in audiospatial perception: implications for models of spatial neglect. J Neurosci. 2014;34(14):5003–11 Available from: .
    1. Làdavas E, Berti A, Ruozzi E, Barboni F. Neglect as a deficit determined by an imbalance between multiple spatial representations. Exp Brain Res. 1997;116(3):493–500.
    1. Rushmore RJ, Valero-Cabre A, Lomber SG, Hilgetag CC, Payne BR. Functional circuitry underlying visual neglect. Brain. 2006;129(7):1803–1821.
    1. Driver J, Mattingley JB. Parietal neglect and visual awareness. Nat Neurosci. 1998;1(1):17–22.
    1. Azouvi P, Jacquin-Courtois S, Luauté J. Rehabilitation of unilateral neglect: evidence-based medicine. Ann Phys Rehabil Med. 2017;60(3):191–197.
    1. Schulz R, Gerloff C, Hummel FC. Non-invasive brain stimulation in neurological diseases. Neuropharmacology. 2013;64:579–587.
    1. Bowen A, Hazelton C, Pollock A, Lincoln NB. Cognitive rehabilitation for spatial neglect following stroke. Cochrane Database Syst Rev. 2013;2013(7):CD003586. 10.1002/14651858.CD003586.pub3.
    1. Yang NYH, Zhou D, Chung RCK, Li-Tsang CWP, Fong KNK. Rehabilitation interventions for unilateral neglect after stroke: a systematic review from 1997 through 2012. Front Hum Neurosci. 2013;7(May):1–11.
    1. Brighina F, Bisiach E, Oliveri M, Piazza A, La Bua V, Daniele O, et al. 1 Hz repetitive transcranial magnetic stimulation of the unaffected hemisphere ameliorates contralesional visuospatial neglect in humans. Neurosci Lett. 2003;336:131–133.
    1. Bang D-H, Bong S-Y. Effect of combination of transcranial direct current stimulation and feedback training on visuospatial neglect in patients with subacute stroke: a pilot randomized controlled trial. J Phys Ther Sci. 2015;27(9):2759–2761.
    1. Brem A-K, Unterburger E, Speight I, Jäncke L. Treatment of visuospatial neglect with biparietal tDCS and cognitive training: a single-case study. Front Syst Neurosci. 2014;8:180.
    1. Lim J, Kang E, Paik N. Repetitive transcranial magnetic stimulation to hemispatial neglect in patients after stroke: an open-label pilot study. J Rehabil Med. 2010;42(5):447–452.
    1. Dambeck N, Sparing R, Meister IG, Wienemann M, Weidemann J, Topper R, et al. Interhemispheric imbalance during visuospatial attention investigated by unilateral and bilateral TMS over human parietal cortices. Brain Res. 2006;1072(1):194–199.
    1. Kinsbourne M. Mechanisms of unilateral neglect. In: Jeannerod M, editor. Neurophysiological and Neuropsychological Aspects of Spatial Neglect. North-Holland; 1987. p. 69–86. Available from: . Accessed 22 Mar 2020.
    1. Jacquin-Courtois S. Hemi-spatial neglect rehabilitation using non-invasive brain stimulation: or how to modulate the disconnection syndrome? Ann Phys Rehabil Med. 2015;58(4):251–258.
    1. Cermak SA, Hausser J. The behavioral inattention test for unilateral visual neglect: a critical review. Phys Occup Ther Geriatr. 1989;7(3):43–53.
    1. Azouvi P, Olivier S, De Montety G, Samuel C, Louis-Dreyfus A, Tesio L. Behavioral assessment of unilateral neglect: study of the psychometric properties of the Catherine Bergego Scale. Arch Phys Med Rehabil. 2003;84(1):51–57.
    1. Buxbaum LJ, Ferraro MK, Veramonti T, Farne A, Whyte J, Ladavas E, et al. Hemispatial neglect: subtypes, neuroanatomy, and disability. Neurol Int. 2004;62(5):749–756.
    1. Pizzamiglio L, Antonucci G, Judica A, Montenero P, Razzano C, Zoccolotti P. Cognitive rehabilitation of the hemineglect disorder in chronic patients with unilateral right brain damage. J Clin Exp Neuropsychol. 1992;14(6):901–923.
    1. Koch G, Bonnì S, Giacobbe V, Bucchi G, Basile B, Lupo F, et al. Theta-burst stimulation of the left hemisphere accelerates recovery of hemispatial neglect. Neurology. 2012;78(1):24–30.
    1. Moes PE, Brown WS, Minnema MT. Individual differences in interhemispheric transfer time (IHTT) as measured by event related potentials. Neuropsychologia. 2007;45(11):2626–2630.
    1. Brown WSWS, Larson EBEB, Jeeves M, Malcolm A, Jeeves A. Directional transmission asymmetries in interhemispheric time : evidence from visual evoked potentials. Neuropsychologia. 1994;32:439–448.
    1. Thut G, Nietzel A, Brandt S, Pascual-Leone A. Alpha band electroencephalographic activity over occipital cortex indexes visuospatial attention bias and predicts visual target detection. J Neurosci. 2006;13(26(37)):9494–9502.
    1. Làdavas E, Giulietti S, Avenanti A, Bertini C, Lorenzini E, Quinquinio C, et al. A-tDCS on the ipsilesional parietal cortex boosts the effects of prism adaptation treatment in neglect. Restor Neurol Neurosci. 2015;33(5):647–662.
    1. Müri RM, Cazzoli D, Nef T, Mosimann UP, Hopfner S, Nyffeler T. Non-invasive brain stimulation in neglect rehabilitation: an update. Front Hum Neurosci. 2013;7(June):1–10.
    1. Winkens B, van Breukelen GJP, Schouten HJA, Berger MPF. Randomized clinical trials with a pre- and a post-treatment measurement: repeated measures versus ANCOVA models. Contemp Clin Trials. 2007;28(6):713–719.
    1. van Breukelen GJP. ANCOVA versus CHANGE from baseline in nonrandomized studies: the difference. Multivariate Behav Res. 2013;48(6):895–922.
    1. Van Breukelen GJP. ANCOVA versus change from baseline had more power in randomized studies and more bias in nonrandomized studies. J Clin Epidemiol. 2006;59(9):920–925.
    1. Dimitrov DM, Rumrill PD. Pretest-posttest designs and measurement of change. Work. 2003;20(2):159–165.
    1. Johnson TR. Violation of the homogeneity of regression slopes assumption in ANCOVA for two-group pre-post designs: tutorial on a modified Johnson-Neyman procedure. Quant Methods Psychol. 2016;12(3):253–263.
    1. Kutlay S, Küçükdeveci A, Elhan AH, Tennant A. Validation of the Behavioural Inattention Test (BIT) in patients with acquired brain injury in Turkey. Neuropsychol Rehabil. 2009;19:461–475.
    1. Thut G, Pascual-Leone A. A review of combined TMS-EEG studies to characterize lasting effects of repetitive TMS and assess their usefulness in cognitive and clinical neuroscience. Brain Topogr. 2010;22(4):219–32. 10.1007/s10548-009-0115-4.
    1. Rossi S, Rossini P. TMS in cognitive plasticity and the potential for rehabilitation. Trends Cogn Sci. 2004;8:273–279.
    1. Battelli L, Grossman ED, Plow EB. Local immediate versus long-range delayed changes in functional connectivity following rTMS on the visual attention network. Brain Stimul. 2017;10(2):263–269.
    1. Plow EB, Cattaneo Z, Carlson TA, Alvarez GA, Pascual-Leone A, Battelli L. The compensatory dynamic of inter-hemispheric interactions in visuospatial attention revealed using rTMS and fMRI. Front Hum Neurosci. 2014;8(1 APR):1–12.
    1. Strens LHA, Oliviero A, Bloem BR, Gerschlager W, Rothwell JC, Brown P. The effects of subthreshold 1 Hz repetitive TMS on cortico-cortical and interhemispheric coherence. Clin Neurophysiol. 2002;113(8):1279–85.

Source: PubMed

3
订阅