Genetics of congenital heart disease: a narrative review of recent advances and clinical implications

Jun Yasuhara, Vidu Garg, Jun Yasuhara, Vidu Garg

Abstract

Congenital heart disease (CHD) is the most common human birth defect and remains a leading cause of mortality in childhood. Although advances in clinical management have improved the survival of children with CHD, adult survivors commonly experience cardiac and non-cardiac comorbidities, which affect quality of life and prognosis. Therefore, the elucidation of genetic etiologies of CHD not only has important clinical implications for genetic counseling of patients and families but may also impact clinical outcomes by identifying at-risk patients. Recent advancements in genetic technologies, including massively parallel sequencing, have allowed for the discovery of new genetic etiologies for CHD. Although variant prioritization and interpretation of pathogenicity remain challenges in the field of CHD genomics, advances in single-cell genomics and functional genomics using cellular and animal models of CHD have the potential to provide novel insights into the underlying mechanisms of CHD and its associated morbidities. In this review, we provide an updated summary of the established genetic contributors to CHD and discuss recent advances in our understanding of the genetic architecture of CHD along with current challenges with the interpretation of genetic variation. Furthermore, we highlight the clinical implications of genetic findings to predict and potentially improve clinical outcomes in patients with CHD.

Keywords: Congenital heart disease (CHD); clinical outcomes; genetic testing; genetics.

Conflict of interest statement

Conflicts of Interest: Both authors have completed the ICMJE uniform disclosure form (available at https://dx.doi.org/10.21037/tp-21-297). VG serves as an unpaid editorial board member of Translational Pediatrics from Aug 2021 to Jul 2023. The other author has no conflicts of interest to declare.

2021 Translational Pediatrics. All rights reserved.

Figures

Figure 1
Figure 1
Established genetic causes of congenital heart disease. Chromosomal abnormalities, copy number variation and single gene variants are associated with ~40% of congenital heart disease cases but the majority (60%) of congenital heart disease remains unknown. All percentages are approximate based on recent publications (13,21-27). NR, not reported.

References

    1. Hoffman JI, Kaplan S. The incidence of congenital heart disease. J Am Coll Cardiol 2002;39:1890-900. 10.1016/S0735-1097(02)01886-7
    1. Boneva RS, Botto LD, Moore CA, et al. Mortality associated with congenital heart defects in the United States: trends and racial disparities, 1979-1997. Circulation 2001;103:2376-81. 10.1161/01.CIR.103.19.2376
    1. Gilboa SM, Salemi JL, Nembhard WN, et al. Mortality resulting from congenital heart disease among children and adults in the United States, 1999 to 2006. Circulation 2010;122:2254-63. 10.1161/CIRCULATIONAHA.110.947002
    1. Khairy P, Ionescu-Ittu R, Mackie AS, et al. Changing mortality in congenital heart disease. J Am Coll Cardiol 2010;56:1149-57. 10.1016/j.jacc.2010.03.085
    1. Raissadati A, Nieminen H, Jokinen E, et al. Progress in late results among pediatric cardiac surgery patients: a population-based 6-decade study with 98% follow-up. Circulation 2015;131:347-53; discussion 353. 10.1161/CIRCULATIONAHA.114.011190
    1. Mital S, Musunuru K, Garg V, et al. Enhancing Literacy in Cardiovascular Genetics: A Scientific Statement From the American Heart Association. Circ Cardiovasc Genet 2016;9:448-67. 10.1161/HCG.0000000000000031
    1. Garg V. Insights into the genetic basis of congenital heart disease. Cell Mol Life Sci 2006;63:1141-8. 10.1007/s00018-005-5532-2
    1. Richards AA, Garg V. Genetics of congenital heart disease. Curr Cardiol Rev 2010;6:91-7. 10.2174/157340310791162703
    1. Zaidi S, Brueckner M. Genetics and Genomics of Congenital Heart Disease. Circ Res 2017;120:923-40. 10.1161/CIRCRESAHA.116.309140
    1. Pierpont ME, Brueckner M, Chung WK, et al. Genetic Basis for Congenital Heart Disease: Revisited: A Scientific Statement From the American Heart Association. Circulation 2018;138:e653-711. 10.1161/CIR.0000000000000606
    1. LaHaye S, Corsmeier D, Basu M, et al. Utilization of Whole Exome Sequencing to Identify Causative Mutations in Familial Congenital Heart Disease. Circ Cardiovasc Genet 2016;9:320-9. 10.1161/CIRCGENETICS.115.001324
    1. Zahavich L, Bowdin S, Mital S. Use of Clinical Exome Sequencing in Isolated Congenital Heart Disease. Circ Cardiovasc Genet 2017;10:e001581. 10.1161/CIRCGENETICS.116.001581
    1. Sifrim A, Hitz MP, Wilsdon A, et al. Distinct genetic architectures for syndromic and nonsyndromic congenital heart defects identified by exome sequencing. Nat Genet 2016;48:1060-5. 10.1038/ng.3627
    1. Jin SC, Homsy J, Zaidi S, et al. Contribution of rare inherited and de novo variants in 2,871 congenital heart disease probands. Nat Genet 2017;49:1593-601. 10.1038/ng.3970
    1. Page DJ, Miossec MJ, Williams SG, et al. Whole Exome Sequencing Reveals the Major Genetic Contributors to Nonsyndromic Tetralogy of Fallot. Circ Res 2019;124:553-63. 10.1161/CIRCRESAHA.118.313250
    1. Garg V. Molecular genetics of aortic valve disease. Curr Opin Cardiol 2006;21:180-4. 10.1097/01.hco.0000221578.18254.70
    1. Fahed AC, Gelb BD, Seidman JG, et al. Genetics of congenital heart disease: the glass half empty. Circ Res 2013;112:707-20. 10.1161/CIRCRESAHA.112.300853
    1. Majumdar U, Yasuhara J, Garg V. In Vivo and In Vitro Genetic Models of Congenital Heart Disease. Cold Spring Harb Perspect Biol 2021;13:a036764. 10.1101/cshperspect.a036764
    1. de Soysa TY, Ranade SS, Okawa S, et al. Single-cell analysis of cardiogenesis reveals basis for organ-level developmental defects. Nature 2019;572:120-4. 10.1038/s41586-019-1414-x
    1. Cowan JR, Ware SM. Genetics and genetic testing in congenital heart disease. Clin Perinatol 2015;42:373-93, ix. 10.1016/j.clp.2015.02.009
    1. Hartman RJ, Rasmussen SA, Botto LD, et al. The contribution of chromosomal abnormalities to congenital heart defects: a population-based study. Pediatr Cardiol 2011;32:1147-57. 10.1007/s00246-011-0034-5
    1. Carey AS, Liang L, Edwards J, et al. Effect of copy number variants on outcomes for infants with single ventricle heart defects. Circ Cardiovasc Genet 2013;6:444-51. 10.1161/CIRCGENETICS.113.000189
    1. Kim DS, Kim JH, Burt AA, et al. Burden of potentially pathologic copy number variants is higher in children with isolated congenital heart disease and significantly impairs covariate-adjusted transplant-free survival. J Thorac Cardiovasc Surg 2016;151:1147-51.e4. 10.1016/j.jtcvs.2015.09.136
    1. Glessner JT, Bick AG, Ito K, et al. Increased frequency of de novo copy number variants in congenital heart disease by integrative analysis of single nucleotide polymorphism array and exome sequence data. Circ Res 2014;115:884-96. 10.1161/CIRCRESAHA.115.304458
    1. Zaidi S, Choi M, Wakimoto H, et al. De novo mutations in histone-modifying genes in congenital heart disease. Nature 2013;498:220-3. 10.1038/nature12141
    1. van der Bom T, Zomer AC, Zwinderman AH, et al. The changing epidemiology of congenital heart disease. Nat Rev Cardiol 2011;8:50-60. 10.1038/nrcardio.2010.166
    1. Homsy J, Zaidi S, Shen Y, et al. De novo mutations in congenital heart disease with neurodevelopmental and other congenital anomalies. Science 2015;350:1262-6. 10.1126/science.aac9396
    1. Muntean I, Togănel R, Benedek T. Genetics of Congenital Heart Disease: Past and Present. Biochem Genet 2017;55:105-23. 10.1007/s10528-016-9780-7
    1. Fudge JC, Jr, Li S, Jaggers J, et al. Congenital heart surgery outcomes in Down syndrome: analysis of a national clinical database. Pediatrics 2010;126:315-22. 10.1542/peds.2009-3245
    1. Bull MJ, Committee on Genetics . Health supervision for children with Down syndrome. Pediatrics 2011;128:393-406. 10.1542/peds.2011-1605
    1. Bull MJ. Down Syndrome. N Engl J Med 2020;382:2344-52. 10.1056/NEJMra1706537
    1. Sybert VP, McCauley E. Turner's syndrome. N Engl J Med 2004;351:1227-38. 10.1056/NEJMra030360
    1. Gravholt CH, Andersen NH, Conway GS, et al. Clinical practice guidelines for the care of girls and women with Turner syndrome: proceedings from the 2016 Cincinnati International Turner Syndrome Meeting. Eur J Endocrinol 2017;177:G1-G70. 10.1530/EJE-17-0430
    1. Levitsky LL, Luria AH, Hayes FJ, et al. Turner syndrome: update on biology and management across the life span. Curr Opin Endocrinol Diabetes Obes 2015;22:65-72. 10.1097/MED.0000000000000128
    1. Botto LD, May K, Fernhoff PM, et al. A population-based study of the 22q11.2 deletion: phenotype, incidence, and contribution to major birth defects in the population. Pediatrics 2003;112:101-7. 10.1542/peds.112.1.101
    1. Peyvandi S, Lupo PJ, Garbarini J, et al. 22q11.2 deletions in patients with conotruncal defects: data from 1,610 consecutive cases. Pediatr Cardiol 2013;34:1687-94. 10.1007/s00246-013-0694-4
    1. Mlynarski EE, Xie M, Taylor D, et al. Rare copy number variants and congenital heart defects in the 22q11.2 deletion syndrome. Hum Genet 2016;135:273-85. 10.1007/s00439-015-1623-9
    1. Digilio MC, Angioni A, De Santis M, et al. Spectrum of clinical variability in familial deletion 22q11.2: from full manifestation to extremely mild clinical anomalies. Clin Genet 2003;63:308-13. 10.1034/j.1399-0004.2003.00049.x
    1. Marino B, Digilio MC, Toscano A, et al. Anatomic patterns of conotruncal defects associated with deletion 22q11. Genet Med 2001;3:45-8. 10.1097/00125817-200101000-00010
    1. Goldmuntz E, Clark BJ, Mitchell LE, et al. Frequency of 22q11 deletions in patients with conotruncal defects. J Am Coll Cardiol 1998;32:492-8. 10.1016/S0735-1097(98)00259-9
    1. Momma K, Kondo C, Ando M, et al. Tetralogy of Fallot associated with chromosome 22q11 deletion. Am J Cardiol 1995;76:618-21. 10.1016/S0002-9149(99)80170-2
    1. Battaglia A, Hoyme HE, Dallapiccola B, et al. Further delineation of deletion 1p36 syndrome in 60 patients: a recognizable phenotype and common cause of developmental delay and mental retardation. Pediatrics 2008;121:404-10. 10.1542/peds.2007-0929
    1. Heilstedt HA, Ballif BC, Howard LA, et al. Population data suggest that deletions of 1p36 are a relatively common chromosome abnormality. Clin Genet 2003;64:310-6. 10.1034/j.1399-0004.2003.00126.x
    1. Slavotinek A, Shaffer LG, Shapira SK. Monosomy 1p36. J Med Genet 1999;36:657-63.
    1. Pober BR. Williams-Beuren syndrome. N Engl J Med 2010;362:239-52. 10.1056/NEJMra0903074
    1. Eronen M, Peippo M, Hiippala A, et al. Cardiovascular manifestations in 75 patients with Williams syndrome. J Med Genet 2002;39:554-8. 10.1136/jmg.39.8.554
    1. Jacobsen P, Hauge M, Henningsen K, et al. An (11;21) translocation in four generations with chromosome 11 abnormalities in the offspring. A clinical, cytogenetical, and gene marker study. Hum Hered 1973;23:568-85. 10.1159/000152624
    1. Grossfeld PD, Mattina T, Lai Z, et al. The 11q terminal deletion disorder: a prospective study of 110 cases. Am J Med Genet A 2004;129A:51-61. 10.1002/ajmg.a.30090
    1. Favier R, Akshoomoff N, Mattson S, et al. Jacobsen syndrome: Advances in our knowledge of phenotype and genotype. Am J Med Genet C Semin Med Genet 2015;169:239-50. 10.1002/ajmg.c.31448
    1. Ye M, Coldren C, Liang X, et al. Deletion of ETS-1, a gene in the Jacobsen syndrome critical region, causes ventricular septal defects and abnormal ventricular morphology in mice. Hum Mol Genet 2010;19:648-56. 10.1093/hmg/ddp532
    1. McDaniell R, Warthen DM, Sanchez-Lara PA, et al. NOTCH2 mutations cause Alagille syndrome, a heterogeneous disorder of the notch signaling pathway. Am J Hum Genet 2006;79:169-73. 10.1086/505332
    1. Turnpenny PD, Ellard S. Alagille syndrome: pathogenesis, diagnosis and management. Eur J Hum Genet 2012;20:251-7. 10.1038/ejhg.2011.181
    1. McElhinney DB, Krantz ID, Bason L, et al. Analysis of cardiovascular phenotype and genotype-phenotype correlation in individuals with a JAG1 mutation and/or Alagille syndrome. Circulation 2002;106:2567-74. 10.1161/01.CIR.0000037221.45902.69
    1. Satoda M, Zhao F, Diaz GA, et al. Mutations in TFAP2B cause Char syndrome, a familial form of patent ductus arteriosus. Nat Genet 2000;25:42-6. 10.1038/75578
    1. Trider CL, Arra-Robar A, van Ravenswaaij-Arts C, et al. Developing a CHARGE syndrome checklist: Health supervision across the lifespan (from head to toe). Am J Med Genet A 2017;173:684-91. 10.1002/ajmg.a.38085
    1. Verloes A. Updated diagnostic criteria for CHARGE syndrome: a proposal. Am J Med Genet A 2005;133A:306-8. 10.1002/ajmg.a.30559
    1. Lin AE, Alexander ME, Colan SD, et al. Clinical, pathological, and molecular analyses of cardiovascular abnormalities in Costello syndrome: a Ras/MAPK pathway syndrome. Am J Med Genet A 2011;155A:486-507. 10.1002/ajmg.a.33857
    1. Ruiz-Perez VL, Ide SE, Strom TM, et al. Mutations in a new gene in Ellis-van Creveld syndrome and Weyers acrodental dysostosis. Nat Genet 2000;24:283-6. 10.1038/73508
    1. Ruiz-Perez VL, Tompson SW, Blair HJ, et al. Mutations in two nonhomologous genes in a head-to-head configuration cause Ellis-van Creveld syndrome. Am J Hum Genet 2003;72:728-32. 10.1086/368063
    1. Basson CT, Cowley GS, Solomon SD, et al. The clinical and genetic spectrum of the Holt-Oram syndrome (heart-hand syndrome) N Engl J Med 1994;330:885-91. 10.1056/NEJM199403313301302
    1. McDermott DA, Bressan MC, He J, et al. TBX5 genetic testing validates strict clinical criteria for Holt-Oram syndrome. Pediatr Res 2005;58:981-6. 10.1203/01.PDR.0000182593.95441.64
    1. Wessels MW, Brooks AS, Hoogeboom J, et al. Kabuki syndrome: a review study of three hundred patients. Clin Dysmorphol 2002;11:95-102. 10.1097/00019605-200204000-00004
    1. Hannibal MC, Buckingham KJ, Ng SB, et al. Spectrum of MLL2 (ALR) mutations in 110 cases of Kabuki syndrome. Am J Med Genet A 2011;155A:1511-6. 10.1002/ajmg.a.34074
    1. Digilio MC, Marino B, Toscano A, et al. Congenital heart defects in Kabuki syndrome. Am J Med Genet 2001;100:269-74. 10.1002/ajmg.1265
    1. Romano AA, Allanson JE, Dahlgren J, et al. Noonan syndrome: clinical features, diagnosis, and management guidelines. Pediatrics 2010;126:746-59. 10.1542/peds.2009-3207
    1. Tartaglia M, Mehler EL, Goldberg R, et al. Mutations in PTPN11, encoding the protein tyrosine phosphatase SHP-2, cause Noonan syndrome. Nat Genet 2001;29:465-8. 10.1038/ng772
    1. Roberts AE, Allanson JE, Tartaglia M, et al. Noonan syndrome. Lancet 2013;381:333-42. 10.1016/S0140-6736(12)61023-X
    1. Prendiville TW, Gauvreau K, Tworog-Dube E, et al. Cardiovascular disease in Noonan syndrome. Arch Dis Child 2014;99:629-34. 10.1136/archdischild-2013-305047
    1. Christiansen J, Dyck JD, Elyas BG, et al. Chromosome 1q21.1 contiguous gene deletion is associated with congenital heart disease. Circ Res 2004;94:1429-35. 10.1161/01.RES.0000130528.72330.5c
    1. Digilio MC, Bernardini L, Consoli F, et al. Congenital heart defects in recurrent reciprocal 1q21.1 deletion and duplication syndromes: rare association with pulmonary valve stenosis. Eur J Med Genet 2013;56:144-9. 10.1016/j.ejmg.2012.12.004
    1. Mefford HC, Sharp AJ, Baker C, et al. Recurrent rearrangements of chromosome 1q21.1 and variable pediatric phenotypes. N Engl J Med 2008;359:1685-99. 10.1056/NEJMoa0805384
    1. Guida V, Ferese R, Rocchetti M, et al. A variant in the carboxyl-terminus of connexin 40 alters GAP junctions and increases risk for tetralogy of Fallot. Eur J Hum Genet 2013;21:69-75. 10.1038/ejhg.2012.109
    1. Claeys I, Holvoet M, Eyskens B, et al. A recognisable behavioural phenotype associated with terminal deletions of the short arm of chromosome 8. Am J Med Genet 1997;74:515-20. 10.1002/(SICI)1096-8628(19970919)74:5<515::AID-AJMG12>;2-F
    1. Wat MJ, Shchelochkov OA, Holder AM, et al. Chromosome 8p23.1 deletions as a cause of complex congenital heart defects and diaphragmatic hernia. Am J Med Genet A 2009;149A:1661-77. 10.1002/ajmg.a.32896
    1. Sperling S, Grimm CH, Dunkel I, et al. Identification and functional analysis of CITED2 mutations in patients with congenital heart defects. Hum Mutat 2005;26:575-82. 10.1002/humu.20262
    1. Garg V, Kathiriya IS, Barnes R, et al. GATA4 mutations cause human congenital heart defects and reveal an interaction with TBX5. Nature 2003;424:443-7. 10.1038/nature01827
    1. Okubo A, Miyoshi O, Baba K, et al. A novel GATA4 mutation completely segregated with atrial septal defect in a large Japanese family. J Med Genet 2004;41:e97. 10.1136/jmg.2004.018895
    1. Hirayama-Yamada K, Kamisago M, Akimoto K, et al. Phenotypes with GATA4 or NKX2.5 mutations in familial atrial septal defect. Am J Med Genet A 2005;135:47-52. 10.1002/ajmg.a.30684
    1. Sarkozy A, Conti E, Neri C, et al. Spectrum of atrial septal defects associated with mutations of NKX2.5 and GATA4 transcription factors. J Med Genet 2005;42:e16. 10.1136/jmg.2004.026740
    1. Tomita-Mitchell A, Maslen CL, Morris CD, et al. GATA4 sequence variants in patients with congenital heart disease. J Med Genet 2007;44:779-83. 10.1136/jmg.2007.052183
    1. Posch MG, Perrot A, Schmitt K, et al. Mutations in GATA4, NKX2.5, CRELD1, and BMP4 are infrequently found in patients with congenital cardiac septal defects. Am J Med Genet A 2008;146A:251-3. 10.1002/ajmg.a.32042
    1. Jiang JQ, Li RG, Wang J, et al. Prevalence and spectrum of GATA5 mutations associated with congenital heart disease. Int J Cardiol 2013;165:570-3. 10.1016/j.ijcard.2012.09.039
    1. Shi LM, Tao JW, Qiu XB, et al. GATA5 loss-of-function mutations associated with congenital bicuspid aortic valve. Int J Mol Med 2014;33:1219-26. 10.3892/ijmm.2014.1700
    1. Shan JP, Wang XL, Qiao YG, et al. Novel and functional DNA sequence variants within the GATA5 gene promoter in ventricular septal defects. World J Pediatr 2014;10:348-53. 10.1007/s12519-014-0511-z
    1. Kodo K, Nishizawa T, Furutani M, et al. GATA6 mutations cause human cardiac outflow tract defects by disrupting semaphorin-plexin signaling. Proc Natl Acad Sci U S A 2009;106:13933-8. 10.1073/pnas.0904744106
    1. Maitra M, Koenig SN, Srivastava D, et al. Identification of GATA6 sequence variants in patients with congenital heart defects. Pediatr Res 2010;68:281-5. 10.1203/PDR.0b013e3181ed17e4
    1. Allen HL, Flanagan SE, Shaw-Smith C, et al. GATA6 haploinsufficiency causes pancreatic agenesis in humans. Nat Genet 2011;44:20-2. 10.1038/ng.1035
    1. Lin X, Huo Z, Liu X, et al. A novel GATA6 mutation in patients with tetralogy of Fallot or atrial septal defect. J Hum Genet 2010;55:662-7. 10.1038/jhg.2010.84
    1. Yorifuji T, Kawakita R, Hosokawa Y, et al. Dominantly inherited diabetes mellitus caused by GATA6 haploinsufficiency: variable intrafamilial presentation. J Med Genet 2012;49:642-3. 10.1136/jmedgenet-2012-101161
    1. Reamon-Buettner SM, Ciribilli Y, Inga A, et al. A loss-of-function mutation in the binding domain of HAND1 predicts hypoplasia of the human hearts. Hum Mol Genet 2008;17:1397-405. 10.1093/hmg/ddn027
    1. Reamon-Buettner SM, Ciribilli Y, Traverso I, et al. A functional genetic study identifies HAND1 mutations in septation defects of the human heart. Hum Mol Genet 2009;18:3567-78. 10.1093/hmg/ddp305
    1. Shen L, Li XF, Shen AD, et al. Transcription factor HAND2 mutations in sporadic Chinese patients with congenital heart disease. Chin Med J (Engl) 2010;123:1623-7.
    1. Sun YM, Wang J, Qiu XB, et al. A HAND2 Loss-of-Function Mutation Causes Familial Ventricular Septal Defect and Pulmonary Stenosis. G3 (Bethesda) 2016;6:987-92. 10.1534/g3.115.026518
    1. Töpf A, Griffin HR, Glen E, et al. Functionally significant, rare transcription factor variants in tetralogy of Fallot. PLoS One 2014;9:e95453. 10.1371/journal.pone.0095453
    1. Li AH, Hanchard NA, Furthner D, et al. Whole exome sequencing in 342 congenital cardiac left sided lesion cases reveals extensive genetic heterogeneity and complex inheritance patterns. Genome Med 2017;9:95. 10.1186/s13073-017-0482-5
    1. Muncke N, Jung C, Rüdiger H, et al. Missense mutations and gene interruption in PROSIT240, a novel TRAP240-like gene, in patients with congenital heart defect (transposition of the great arteries). Circulation 2003;108:2843-50. 10.1161/
    1. Al Turki S, Manickaraj AK, Mercer CL, et al. Rare variants in NR2F2 cause congenital heart defects in humans. Am J Hum Genet 2014;94:574-85. 10.1016/j.ajhg.2014.03.007
    1. Schott JJ, Benson DW, Basson CT, et al. Congenital heart disease caused by mutations in the transcription factor NKX2-5. Science 1998;281:108-11. 10.1126/science.281.5373.108
    1. Benson DW, Silberbach GM, Kavanaugh-McHugh A, et al. Mutations in the cardiac transcription factor NKX2.5 affect diverse cardiac developmental pathways. J Clin Invest 1999;104:1567-73. 10.1172/JCI8154
    1. Goldmuntz E, Geiger E, Benson DW. NKX2.5 mutations in patients with tetralogy of fallot. Circulation 2001;104:2565-8. 10.1161/hc4601.098427
    1. McElhinney DB, Geiger E, Blinder J, et al. NKX2.5 mutations in patients with congenital heart disease. J Am Coll Cardiol 2003;42:1650-5. 10.1016/j.jacc.2003.05.004
    1. Stallmeyer B, Fenge H, Nowak-Göttl U, et al. Mutational spectrum in the cardiac transcription factor gene NKX2.5 (CSX) associated with congenital heart disease. Clin Genet 2010;78:533-40. 10.1111/j.1399-0004.2010.01422.x
    1. Ellesøe SG, Johansen MM, Bjerre JV, et al. Familial Atrial Septal Defect and Sudden Cardiac Death: Identification of a Novel NKX2-5 Mutation and a Review of the Literature. Congenit Heart Dis 2016;11:283-90. 10.1111/chd.12317
    1. Heathcote K, Braybrook C, Abushaban L, et al. Common arterial trunk associated with a homeodomain mutation of NKX2.6. Hum Mol Genet 2005;14:585-93. 10.1093/hmg/ddi055
    1. Ta-Shma A, El-lahham N, Edvardson S, et al. Conotruncal malformations and absent thymus due to a deleterious NKX2-6 mutation. J Med Genet 2014;51:268-70. 10.1136/jmedgenet-2013-102100
    1. Yagi H, Furutani Y, Hamada H, et al. Role of TBX1 in human del22q11.2 syndrome. Lancet 2003;362:1366-73. 10.1016/S0140-6736(03)14632-6
    1. Smemo S, Campos LC, Moskowitz IP, et al. Regulatory variation in a TBX5 enhancer leads to isolated congenital heart disease. Hum Mol Genet 2012;21:3255-63. 10.1093/hmg/dds165
    1. Kirk EP, Sunde M, Costa MW, et al. Mutations in cardiac T-box factor gene TBX20 are associated with diverse cardiac pathologies, including defects of septation and valvulogenesis and cardiomyopathy. Am J Hum Genet 2007;81:280-91. 10.1086/519530
    1. Zhou YM, Dai XY, Huang RT, et al. A novel TBX20 loss-of-function mutation contributes to adult-onset dilated cardiomyopathy or congenital atrial septal defect. Mol Med Rep 2016;14:3307-14. 10.3892/mmr.2016.5609
    1. Huang RT, Wang J, Xue S, et al. TBX20 loss-of-function mutation responsible for familial tetralogy of Fallot or sporadic persistent truncus arteriosus. Int J Med Sci 2017;14:323-32. 10.7150/ijms.17834
    1. Lu CX, Wang W, Wang Q, et al. A Novel MEF2C Loss-of-Function Mutation Associated with Congenital Double Outlet Right Ventricle. Pediatr Cardiol 2018;39:794-804. 10.1007/s00246-018-1822-y
    1. Abdul-Sater Z, Yehya A, Beresian J, et al. Two heterozygous mutations in NFATC1 in a patient with Tricuspid Atresia. PLoS One 2012;7:e49532. 10.1371/journal.pone.0049532
    1. Ferese R, Bonetti M, Consoli F, et al. Heterozygous missense mutations in NFATC1 are associated with atrioventricular septal defect. Hum Mutat 2018;39:1428-41. 10.1002/humu.23593
    1. Pizzuti A, Sarkozy A, Newton AL, et al. Mutations of ZFPM2/FOG2 gene in sporadic cases of tetralogy of Fallot. Hum Mutat 2003;22:372-7. 10.1002/humu.10261
    1. De Luca A, Sarkozy A, Ferese R, et al. New mutations in ZFPM2/FOG2 gene in tetralogy of Fallot and double outlet right ventricle. Clin Genet 2011;80:184-90. 10.1111/j.1399-0004.2010.01523.x
    1. Tan ZP, Huang C, Xu ZB, et al. Novel ZFPM2/FOG2 variants in patients with double outlet right ventricle. Clin Genet 2012;82:466-71. 10.1111/j.1399-0004.2011.01787.x
    1. Smith KA, Joziasse IC, Chocron S, et al. Dominant-negative ALK2 allele associates with congenital heart defects. Circulation 2009;119:3062-9. 10.1161/CIRCULATIONAHA.108.843714
    1. Goldmuntz E, Bamford R, Karkera JD, et al. CFC1 mutations in patients with transposition of the great arteries and double-outlet right ventricle. Am J Hum Genet 2002;70:776-80. 10.1086/339079
    1. Robinson SW, Morris CD, Goldmuntz E, et al. Missense mutations in CRELD1 are associated with cardiac atrioventricular septal defects. Am J Hum Genet 2003;72:1047-52. 10.1086/374319
    1. Zatyka M, Priestley M, Ladusans EJ, et al. Analysis of CRELD1 as a candidate 3p25 atrioventicular septal defect locus (AVSD2). Clin Genet 2005;67:526-8. 10.1111/j.1399-0004.2005.00435.x
    1. Maslen CL, Babcock D, Robinson SW, et al. CRELD1 mutations contribute to the occurrence of cardiac atrioventricular septal defects in Down syndrome. Am J Med Genet A 2006;140:2501-5. 10.1002/ajmg.a.31494
    1. Guo Y, Shen J, Yuan L, et al. Novel CRELD1 gene mutations in patients with atrioventricular septal defect. World J Pediatr 2010;6:348-52. 10.1007/s12519-010-0235-7
    1. Roessler E, Ouspenskaia MV, Karkera JD, et al. Reduced NODAL signaling strength via mutation of several pathway members including FOXH1 is linked to human heart defects and holoprosencephaly. Am J Hum Genet 2008;83:18-29. 10.1016/j.ajhg.2008.05.012
    1. Karkera JD, Lee JS, Roessler E, et al. Loss-of-function mutations in growth differentiation factor-1 (GDF1) are associated with congenital heart defects in humans. Am J Hum Genet 2007;81:987-94. 10.1086/522890
    1. Dasgupta C, Martinez AM, Zuppan CW, et al. Identification of connexin43 (alpha1) gap junction gene mutations in patients with hypoplastic left heart syndrome by denaturing gradient gel electrophoresis (DGGE). Mutat Res 2001;479:173-86. 10.1016/S0027-5107(01)00160-9
    1. Wang B, Wen Q, Xie X, et al. Mutation analysis of Connexon43 gene in Chinese patients with congenital heart defects. Int J Cardiol 2010;145:487-9. 10.1016/j.ijcard.2009.06.026
    1. Izumi K, Lippa AM, Wilkens A, et al. Congenital heart defects in oculodentodigital dysplasia: Report of two cases. Am J Med Genet A 2013;161A:3150-4. 10.1002/ajmg.a.36159
    1. Reamon-Buettner SM, Borlak J. HEY2 mutations in malformed hearts. Hum Mutat 2006;27:118. 10.1002/humu.9390
    1. Li L, Krantz ID, Deng Y, et al. Alagille syndrome is caused by mutations in human Jagged1, which encodes a ligand for Notch1. Nat Genet 1997;16:243-51. 10.1038/ng0797-243
    1. Oda T, Elkahloun AG, Pike BL, et al. Mutations in the human Jagged1 gene are responsible for Alagille syndrome. Nat Genet 1997;16:235-42. 10.1038/ng0797-235
    1. Eldadah ZA, Hamosh A, Biery NJ, et al. Familial Tetralogy of Fallot caused by mutation in the jagged1 gene. Hum Mol Genet 2001;10:163-9. 10.1093/hmg/10.2.163
    1. Mohapatra B, Casey B, Li H, et al. Identification and functional characterization of NODAL rare variants in heterotaxy and isolated cardiovascular malformations. Hum Mol Genet 2009;18:861-71. 10.1093/hmg/ddn411
    1. Garg V, Muth AN, Ransom JF, et al. Mutations in NOTCH1 cause aortic valve disease. Nature 2005;437:270-4. 10.1038/nature03940
    1. Kerstjens-Frederikse WS, van de Laar IM, Vos YJ, et al. Cardiovascular malformations caused by NOTCH1 mutations do not keep left: data on 428 probands with left-sided CHD and their families. Genet Med 2016;18:914-23. 10.1038/gim.2015.193
    1. Bleyl SB, Saijoh Y, Bax NA, et al. Dysregulation of the PDGFRA gene causes inflow tract anomalies including TAPVR: integrating evidence from human genetics and model organisms. Hum Mol Genet 2010;19:1286-301. 10.1093/hmg/ddq005
    1. Tan HL, Glen E, Töpf A, et al. Nonsynonymous variants in the SMAD6 gene predispose to congenital cardiovascular malformation. Hum Mutat 2012;33:720-7. 10.1002/humu.22030
    1. Thienpont B, Zhang L, Postma AV, et al. Haploinsufficiency of TAB2 causes congenital heart defects in humans. Am J Hum Genet 2010;86:839-49. 10.1016/j.ajhg.2010.04.011
    1. Reuter MS, Jobling R, Chaturvedi RR, et al. Haploinsufficiency of vascular endothelial growth factor related signaling genes is associated with tetralogy of Fallot. Genet Med 2019;21:1001-7. 10.1038/s41436-018-0260-9
    1. Zhao W, Wang J, Shen J, et al. Mutations in VEGFA are associated with congenital left ventricular outflow tract obstruction. Biochem Biophys Res Commun 2010;396:483-8. 10.1016/j.bbrc.2010.04.124
    1. Matsson H, Eason J, Bookwalter CS, et al. Alpha-cardiac actin mutations produce atrial septal defects. Hum Mol Genet 2008;17:256-65. 10.1093/hmg/ddm302
    1. Durst R, Sauls K, Peal DS, et al. Mutations in DCHS1 cause mitral valve prolapse. Nature 2015;525:109-13. 10.1038/nature14670
    1. Ewart AK, Morris CA, Atkinson D, et al. Hemizygosity at the elastin locus in a developmental disorder, Williams syndrome. Nat Genet 1993;5:11-6. 10.1038/ng0993-11
    1. Metcalfe K, Rucka AK, Smoot L, et al. Elastin: mutational spectrum in supravalvular aortic stenosis. Eur J Hum Genet 2000;8:955-63. 10.1038/sj.ejhg.5200564
    1. Micale L, Turturo MG, Fusco C, et al. Identification and characterization of seven novel mutations of elastin gene in a cohort of patients affected by supravalvular aortic stenosis. Eur J Hum Genet 2010;18:317-23. 10.1038/ejhg.2009.181
    1. Li DY, Toland AE, Boak BB, et al. Elastin point mutations cause an obstructive vascular disease, supravalvular aortic stenosis. Hum Mol Genet 1997;6:1021-8. 10.1093/hmg/6.7.1021
    1. Ching YH, Ghosh TK, Cross SJ, et al. Mutation in myosin heavy chain 6 causes atrial septal defect. Nat Genet 2005;37:423-8. 10.1038/ng1526
    1. Posch MG, Waldmuller S, Müller M, et al. Cardiac alpha-myosin (MYH6) is the predominant sarcomeric disease gene for familial atrial septal defects. PLoS One 2011;6:e28872. 10.1371/journal.pone.0028872
    1. Granados-Riveron JT, Ghosh TK, Pope M, et al. Alpha-cardiac myosin heavy chain (MYH6) mutations affecting myofibril formation are associated with congenital heart defects. Hum Mol Genet 2010;19:4007-16. 10.1093/hmg/ddq315
    1. Budde BS, Binner P, Waldmüller S, et al. Noncompaction of the ventricular myocardium is associated with a de novo mutation in the beta-myosin heavy chain gene. PLoS One 2007;2:e1362. 10.1371/journal.pone.0001362
    1. Postma AV, van Engelen K, van de Meerakker J, et al. Mutations in the sarcomere gene MYH7 in Ebstein anomaly. Circ Cardiovasc Genet 2011;4:43-50. 10.1161/CIRCGENETICS.110.957985
    1. Zhu L, Vranckx R, Khau Van Kien P, et al. Mutations in myosin heavy chain 11 cause a syndrome associating thoracic aortic aneurysm/aortic dissection and patent ductus arteriosus. Nat Genet 2006;38:343-9. 10.1038/ng1721
    1. Olson EN. Gene regulatory networks in the evolution and development of the heart. Science 2006;313:1922-7. 10.1126/science.1132292
    1. Kodo K, Nishizawa T, Furutani M, et al. Genetic analysis of essential cardiac transcription factors in 256 patients with non-syndromic congenital heart defects. Circ J 2012;76:1703-11. 10.1253/circj.CJ-11-1389
    1. Srivastava D. Genetic regulation of cardiogenesis and congenital heart disease. Annu Rev Pathol 2006;1:199-213. 10.1146/annurev.pathol.1.110304.100039
    1. Akçaboy MI, Cengiz FB, Inceoğlu B, et al. The effect of p.Arg25Cys alteration in NKX2-5 on conotruncal heart anomalies: mutation or polymorphism? Pediatr Cardiol 2008;29:126-9. 10.1007/s00246-007-9058-2
    1. Biben C, Weber R, Kesteven S, et al. Cardiac septal and valvular dysmorphogenesis in mice heterozygous for mutations in the homeobox gene Nkx2-5. Circ Res 2000;87:888-95. 10.1161/01.RES.87.10.888
    1. Ashraf H, Pradhan L, Chang EI, et al. A mouse model of human congenital heart disease: high incidence of diverse cardiac anomalies and ventricular noncompaction produced by heterozygous Nkx2-5 homeodomain missense mutation. Circ Cardiovasc Genet 2014;7:423-33. 10.1161/CIRCGENETICS.113.000281
    1. Chowdhury R, Ashraf H, Melanson M, et al. Mouse Model of Human Congenital Heart Disease: Progressive Atrioventricular Block Induced by a Heterozygous Nkx2-5 Homeodomain Missense Mutation. Circ Arrhythm Electrophysiol 2015;8:1255-64. 10.1161/CIRCEP.115.002720
    1. Rajagopal SK, Ma Q, Obler D, et al. Spectrum of heart disease associated with murine and human GATA4 mutation. J Mol Cell Cardiol 2007;43:677-85. 10.1016/j.yjmcc.2007.06.004
    1. Misra C, Sachan N, McNally CR, et al. Congenital heart disease-causing Gata4 mutation displays functional deficits in vivo. PLoS Genet 2012;8:e1002690. 10.1371/journal.pgen.1002690
    1. LaHaye S, Majumdar U, Yasuhara J, et al. Developmental origins for semilunar valve stenosis identified in mice harboring congenital heart disease-associated GATA4 mutation. Dis Model Mech 2019;12:dmm036764. 10.1242/dmm.036764
    1. Wei D, Bao H, Liu XY, et al. GATA5 loss-of-function mutations underlie tetralogy of fallot. Int J Med Sci 2013;10:34-42. 10.7150/ijms.5270
    1. Kassab K, Hariri H, Gharibeh L, et al. GATA5 mutation homozygosity linked to a double outlet right ventricle phenotype in a Lebanese patient. Mol Genet Genomic Med 2015;4:160-71. 10.1002/mgg3.190
    1. Laforest B, Andelfinger G, Nemer M. Loss of Gata5 in mice leads to bicuspid aortic valve. J Clin Invest 2011;121:2876-87. 10.1172/JCI44555
    1. Škorić-Milosavljević D, Tjong FVY, Barc J, et al. GATA6 mutations: Characterization of two novel patients and a comprehensive overview of the GATA6 genotypic and phenotypic spectrum. Am J Med Genet A 2019;179:1836-45.
    1. Gharibeh L, Komati H, Bossé Y, et al. GATA6 Regulates Aortic Valve Remodeling, and Its Haploinsufficiency Leads to Right-Left Type Bicuspid Aortic Valve. Circulation 2018;138:1025-38. 10.1161/CIRCULATIONAHA.117.029506
    1. Sharma A, Wasson LK, Willcox JA, et al. GATA6 mutations in hiPSCs inform mechanisms for maldevelopment of the heart, pancreas, and diaphragm. Elife 2020;9:53278. 10.7554/eLife.53278
    1. Basson CT, Bachinsky DR, Lin RC, et al. Mutations in human TBX5 corrected cause limb and cardiac malformation in Holt-Oram syndrome. Nat Genet 1997;15:30-5. 10.1038/ng0197-30
    1. Lindsay EA, Vitelli F, Su H, et al. Tbx1 haploinsufficieny in the DiGeorge syndrome region causes aortic arch defects in mice. Nature 2001;410:97-101. 10.1038/35065105
    1. Griffin HR, Töpf A, Glen E, et al. Systematic survey of variants in TBX1 in non-syndromic tetralogy of Fallot identifies a novel 57 base pair deletion that reduces transcriptional activity but finds no evidence for association with common variants. Heart 2010;96:1651-5. 10.1136/hrt.2010.200121
    1. Stittrich AB, Lehman A, Bodian DL, et al. Mutations in NOTCH1 cause Adams-Oliver syndrome. Am J Hum Genet 2014;95:275-84. 10.1016/j.ajhg.2014.07.011
    1. McBride KL, Riley MF, Zender GA, et al. NOTCH1 mutations in individuals with left ventricular outflow tract malformations reduce ligand-induced signaling. Hum Mol Genet 2008;17:2886-93. 10.1093/hmg/ddn187
    1. Wang B, Yan J, Mi R, et al. Forkhead box H1 (FOXH1) sequence variants in ventricular septal defect. Int J Cardiol 2010;145:83-5. 10.1016/j.ijcard.2009.05.030
    1. De Luca A, Sarkozy A, Consoli F, et al. Familial transposition of the great arteries caused by multiple mutations in laterality genes. Heart 2010;96:673-7. 10.1136/hrt.2009.181685
    1. Carniel E, Taylor MR, Sinagra G, et al. Alpha-myosin heavy chain: a sarcomeric gene associated with dilated and hypertrophic phenotypes of cardiomyopathy. Circulation 2005;112:54-9. 10.1161/CIRCULATIONAHA.104.507699
    1. Monserrat L, Hermida-Prieto M, Fernandez X, et al. Mutation in the alpha-cardiac actin gene associated with apical hypertrophic cardiomyopathy, left ventricular non-compaction, and septal defects. Eur Heart J 2007;28:1953-61. 10.1093/eurheartj/ehm239
    1. Jenkins KJ, Correa A, Feinstein JA, et al. Noninherited risk factors and congenital cardiovascular defects: current knowledge: a scientific statement from the American Heart Association Council on Cardiovascular Disease in the Young: endorsed by the American Academy of Pediatrics. Circulation 2007;115:2995-3014. 10.1161/CIRCULATIONAHA.106.183216
    1. Kuciene R, Dulskiene V. Selected environmental risk factors and congenital heart defects. Medicina (Kaunas) 2008;44:827-32. 10.3390/medicina44110104
    1. Lage K, Greenway SC, Rosenfeld JA, et al. Genetic and environmental risk factors in congenital heart disease functionally converge in protein networks driving heart development. Proc Natl Acad Sci U S A 2012;109:14035-40. 10.1073/pnas.1210730109
    1. Gilbert-Barness E. Teratogenic causes of malformations. Ann Clin Lab Sci 2010;40:99-114.
    1. Kalisch-Smith JI, Ved N, Sparrow DB. Environmental Risk Factors for Congenital Heart Disease. Cold Spring Harb Perspect Biol 2020;12:a037234. 10.1101/cshperspect.a037234
    1. Basu M, Zhu JY, LaHaye S, et al. Epigenetic mechanisms underlying maternal diabetes-associated risk of congenital heart disease. JCI Insight 2017;2:95085. 10.1172/jci.insight.95085
    1. Basu M, Garg V. Maternal hyperglycemia and fetal cardiac development: Clinical impact and underlying mechanisms. Birth Defects Res 2018;110:1504-16. 10.1002/bdr2.1435
    1. Chapman G, Moreau JLM, I P E, et al. Functional genomics and gene-environment interaction highlight the complexity of congenital heart disease caused by Notch pathway variants. Hum Mol Genet 2020;29:566-79. 10.1093/hmg/ddz270
    1. Pediatric Cardiac Genomics Consortium ; Gelb B, Brueckner M, et al. The Congenital Heart Disease Genetic Network Study: rationale, design, and early results. Circ Res 2013;112:698-706. 10.1161/CIRCRESAHA.111.300297
    1. Watkins WS, Hernandez EJ, Wesolowski S, et al. De novo and recessive forms of congenital heart disease have distinct genetic and phenotypic landscapes. Nat Commun 2019;10:4722. 10.1038/s41467-019-12582-y
    1. Gifford CA, Ranade SS, Samarakoon R, et al. Oligogenic inheritance of a human heart disease involving a genetic modifier. Science 2019;364:865-70. 10.1126/science.aat5056
    1. Brodwall K, Greve G, Leirgul E, et al. Recurrence of congenital heart defects among siblings-a nationwide study. Am J Med Genet A 2017;173:1575-85. 10.1002/ajmg.a.38237
    1. Manshaei R, Merico D, Reuter MS, et al. Genes and Pathways Implicated in Tetralogy of Fallot Revealed by Ultra-Rare Variant Burden Analysis in 231 Genome Sequences. Front Genet 2020;11:957. 10.3389/fgene.2020.00957
    1. Matos-Nieves A, Yasuhara J, Garg V. Another Notch in the Genetic Puzzle of Tetralogy of Fallot. Circ Res 2019;124:462-4. 10.1161/CIRCRESAHA.118.314520
    1. Škorić-Milosavljević D, Lahrouchi N, Bosada FM, et al. Rare variants in KDR, encoding VEGF Receptor 2, are associated with tetralogy of Fallot. Genet Med 2021. [Epub ahead of print]. doi: .10.1038/s41436-021-01212-y
    1. Theis JL, Zimmermann MT, Evans JM, et al. Recessive MYH6 Mutations in Hypoplastic Left Heart With Reduced Ejection Fraction. Circ Cardiovasc Genet 2015;8:564-71. 10.1161/CIRCGENETICS.115.001070
    1. Tomita-Mitchell A, Stamm KD, Mahnke DK, et al. Impact of MYH6 variants in hypoplastic left heart syndrome. Physiol Genomics 2016;48:912-21. 10.1152/physiolgenomics.00091.2016
    1. Theis JL, Hu JJ, Sundsbak RS, et al. Genetic Association Between Hypoplastic Left Heart Syndrome and Cardiomyopathies. Circ Genom Precis Med 2021;14:e003126. 10.1161/CIRCGEN.120.003126
    1. McKean DM, Homsy J, Wakimoto H, et al. Loss of RNA expression and allele-specific expression associated with congenital heart disease. Nat Commun 2016;7:12824. 10.1038/ncomms12824
    1. Jacko M, Weyn-Vanhentenryck SM, Smerdon JW, et al. Rbfox Splicing Factors Promote Neuronal Maturation and Axon Initial Segment Assembly. Neuron 2018;97:853-868.e6. 10.1016/j.neuron.2018.01.020
    1. Wei C, Qiu J, Zhou Y, et al. Repression of the Central Splicing Regulator RBFox2 Is Functionally Linked to Pressure Overload-Induced Heart Failure. Cell Rep 2015;10:1521-33. 10.1016/j.celrep.2015.02.013
    1. Verma SK, Deshmukh V, Nutter CA, et al. Rbfox2 function in RNA metabolism is impaired in hypoplastic left heart syndrome patient hearts. Sci Rep 2016;6:30896. 10.1038/srep30896
    1. Froimchuk E, Jang Y, Ge K. Histone H3 lysine 4 methyltransferase KMT2D. Gene 2017;627:337-42. 10.1016/j.gene.2017.06.056
    1. Ng SB, Bigham AW, Buckingham KJ, et al. Exome sequencing identifies MLL2 mutations as a cause of Kabuki syndrome. Nat Genet 2010;42:790-3. 10.1038/ng.646
    1. Cuvertino S, Hartill V, Colyer A, et al. A restricted spectrum of missense KMT2D variants cause a multiple malformations disorder distinct from Kabuki syndrome. Genet Med 2020;22:867-77. 10.1038/s41436-019-0743-3
    1. Blue GM, Kirk EP, Giannoulatou E, et al. Targeted next-generation sequencing identifies pathogenic variants in familial congenital heart disease. J Am Coll Cardiol 2014;64:2498-506. 10.1016/j.jacc.2014.09.048
    1. Blue GM, Humphreys D, Szot J, et al. The promises and challenges of exome sequencing in familial, non-syndromic congenital heart disease. Int J Cardiol 2017;230:155-63. 10.1016/j.ijcard.2016.12.024
    1. Richards S, Aziz N, Bale S, et al. Standards and guidelines for the interpretation of sequence variants: a joint consensus recommendation of the American College of Medical Genetics and Genomics and the Association for Molecular Pathology. Genet Med 2015;17:405-24. 10.1038/gim.2015.30
    1. Szot JO, Cuny H, Blue GM, et al. A Screening Approach to Identify Clinically Actionable Variants Causing Congenital Heart Disease in Exome Data. Circ Genom Precis Med 2018;11:e001978. 10.1161/CIRCGEN.117.001978
    1. Sevim Bayrak C, Zhang P, Tristani-Firouzi M, et al. De novo variants in exomes of congenital heart disease patients identify risk genes and pathways. Genome Med 2020;12:9. 10.1186/s13073-019-0709-8
    1. Li G, Xu A, Sim S, et al. Transcriptomic Profiling Maps Anatomically Patterned Subpopulations among Single Embryonic Cardiac Cells. Dev Cell 2016;39:491-507. 10.1016/j.devcel.2016.10.014
    1. DeLaughter DM, Bick AG, Wakimoto H, et al. Single-Cell Resolution of Temporal Gene Expression during Heart Development. Dev Cell 2016;39:480-90. 10.1016/j.devcel.2016.10.001
    1. Lescroart F, Wang X, Lin X, et al. Defining the earliest step of cardiovascular lineage segregation by single-cell RNA-seq. Science 2018;359:1177-81. 10.1126/science.aao4174
    1. Zhang Q, Carlin D, Zhu F, et al. Unveiling Complexity and Multipotentiality of Early Heart Fields. Circ Res 2021;129:474-87. 10.1161/CIRCRESAHA.121.318943
    1. Lin H, McBride KL, Garg V, et al. Decoding Genetics of Congenital Heart Disease Using Patient-Derived Induced Pluripotent Stem Cells (iPSCs). Front Cell Dev Biol 2021;9:630069. 10.3389/fcell.2021.630069
    1. Ge X, Ren Y, Bartulos O, et al. Modeling supravalvular aortic stenosis syndrome with human induced pluripotent stem cells. Circulation 2012;126:1695-704. 10.1161/CIRCULATIONAHA.112.116996
    1. Theodoris CV, Li M, White MP, et al. Human disease modeling reveals integrated transcriptional and epigenetic mechanisms of NOTCH1 haploinsufficiency. Cell 2015;160:1072-86. 10.1016/j.cell.2015.02.035
    1. Ang YS, Rivas RN, Ribeiro AJS, et al. Disease Model of GATA4 Mutation Reveals Transcription Factor Cooperativity in Human Cardiogenesis. Cell 2016;167:1734-1749.e22. 10.1016/j.cell.2016.11.033
    1. Kathiriya IS, Rao KS, Iacono G, et al. Modeling Human TBX5 Haploinsufficiency Predicts Regulatory Networks for Congenital Heart Disease. Dev Cell 2021;56:292-309.e9. 10.1016/j.devcel.2020.11.020
    1. Hrstka SC, Li X, Nelson TJ, et al. NOTCH1-Dependent Nitric Oxide Signaling Deficiency in Hypoplastic Left Heart Syndrome Revealed Through Patient-Specific Phenotypes Detected in Bioengineered Cardiogenesis. Stem Cells 2017;35:1106-19. 10.1002/stem.2582
    1. Yang C, Xu Y, Yu M, et al. Induced pluripotent stem cell modelling of HLHS underlines the contribution of dysfunctional NOTCH signalling to impaired cardiogenesis. Hum Mol Genet 2017;26:3031-45. 10.1093/hmg/ddx140
    1. Miao Y, Tian L, Martin M, et al. Intrinsic Endocardial Defects Contribute to Hypoplastic Left Heart Syndrome. Cell Stem Cell 2020;27:574-589.e8. 10.1016/j.stem.2020.07.015
    1. Paige SL, Galdos FX, Lee S, et al. Patient-Specific Induced Pluripotent Stem Cells Implicate Intrinsic Impaired Contractility in Hypoplastic Left Heart Syndrome. Circulation 2020;142:1605-8. 10.1161/CIRCULATIONAHA.119.045317
    1. Lam YY, Keung W, Chan CH, et al. Single-Cell Transcriptomics of Engineered Cardiac Tissues From Patient-Specific Induced Pluripotent Stem Cell-Derived Cardiomyocytes Reveals Abnormal Developmental Trajectory and Intrinsic Contractile Defects in Hypoplastic Right Heart Syndrome. J Am Heart Assoc 2020;9:e016528. 10.1161/JAHA.120.016528
    1. Kodo K, Ong SG, Jahanbani F, et al. iPSC-derived cardiomyocytes reveal abnormal TGF-β signalling in left ventricular non-compaction cardiomyopathy. Nat Cell Biol 2016;18:1031-42. 10.1038/ncb3411
    1. Kitani T, Tian L, Zhang T, et al. RNA Sequencing Analysis of Induced Pluripotent Stem Cell-Derived Cardiomyocytes From Congenital Heart Disease Patients. Circ Res 2020;126:923-5. 10.1161/CIRCRESAHA.119.315653
    1. Andersen JD, Jacobsen SB, Trudsø LC, et al. Whole genome and transcriptome sequencing of post-mortem cardiac tissues from sudden cardiac death victims identifies a gene regulatory variant in NEXN. Int J Legal Med 2019;133:1699-709. 10.1007/s00414-019-02127-9
    1. Richter F, Morton SU, Kim SW, et al. Genomic analyses implicate noncoding de novo variants in congenital heart disease. Nat Genet 2020;52:769-77. 10.1038/s41588-020-0652-z
    1. Landis BJ, Ware SM. The Current Landscape of Genetic Testing in Cardiovascular Malformations: Opportunities and Challenges. Front Cardiovasc Med 2016;3:22. 10.3389/fcvm.2016.00022
    1. Manolio TA. Bringing genome-wide association findings into clinical use. Nat Rev Genet 2013;14:549-58. 10.1038/nrg3523
    1. Gaynor JW, Gerdes M, Zackai EH, et al. Apolipoprotein E genotype and neurodevelopmental sequelae of infant cardiac surgery. J Thorac Cardiovasc Surg 2003;126:1736-45. 10.1016/S0022-5223(03)01188-7
    1. Gaynor JW, Kim DS, Arrington CB, et al. Validation of association of the apolipoprotein E ε2 allele with neurodevelopmental dysfunction after cardiac surgery in neonates and infants. J Thorac Cardiovasc Surg 2014;148:2560-6. 10.1016/j.jtcvs.2014.07.052
    1. Mital S, Chung WK, Colan SD, et al. Renin-angiotensin-aldosterone genotype influences ventricular remodeling in infants with single ventricle. Circulation 2011;123:2353-62. 10.1161/CIRCULATIONAHA.110.004341
    1. Russell MW, Chung WK, Kaltman JR, et al. Advances in the Understanding of the Genetic Determinants of Congenital Heart Disease and Their Impact on Clinical Outcomes. J Am Heart Assoc 2018;7:006906. 10.1161/JAHA.117.006906
    1. Blue GM, Ip E, Walker K, et al. Genetic burden and associations with adverse neurodevelopment in neonates with congenital heart disease. Am Heart J 2018;201:33-9. 10.1016/j.ahj.2018.03.021
    1. Mercer-Rosa L, Pinto N, Yang W, et al. 22q11.2 Deletion syndrome is associated with perioperative outcome in tetralogy of Fallot. J Thorac Cardiovasc Surg 2013;146:868-73. 10.1016/j.jtcvs.2012.12.028
    1. Boskovski MT, Homsy J, Nathan M, et al. De Novo Damaging Variants, Clinical Phenotypes, and Post-Operative Outcomes in Congenital Heart Disease. Circ Genom Precis Med 2020;13:e002836. 10.1161/CIRCGEN.119.002836
    1. Dailey-Schwartz AL, Tadros HJ, Azamian MS, et al. Copy Number Variants of Undetermined Significance Are Not Associated with Worse Clinical Outcomes in Hypoplastic Left Heart Syndrome. J Pediatr 2018;202:206-211.e2. 10.1016/j.jpeds.2018.07.022

Source: PubMed

3
订阅