Exome sequencing in multiplex families with left-sided cardiac defects has high yield for disease gene discovery

David M Gordon, David Cunningham, Gloria Zender, Patrick J Lawrence, Jacqueline S Penaloza, Hui Lin, Sara M Fitzgerald-Butt, Katherine Myers, Tiffany Duong, Donald J Corsmeier, Jeffrey B Gaither, Harkness C Kuck, Saranga Wijeratne, Blythe Moreland, Benjamin J Kelly, Baylor-Johns Hopkins Center for Mendelian Genomics, Vidu Garg, Peter White, Kim L McBride, David M Gordon, David Cunningham, Gloria Zender, Patrick J Lawrence, Jacqueline S Penaloza, Hui Lin, Sara M Fitzgerald-Butt, Katherine Myers, Tiffany Duong, Donald J Corsmeier, Jeffrey B Gaither, Harkness C Kuck, Saranga Wijeratne, Blythe Moreland, Benjamin J Kelly, Baylor-Johns Hopkins Center for Mendelian Genomics, Vidu Garg, Peter White, Kim L McBride

Abstract

Congenital heart disease (CHD) is a common group of birth defects with a strong genetic contribution to their etiology, but historically the diagnostic yield from exome studies of isolated CHD has been low. Pleiotropy, variable expressivity, and the difficulty of accurately phenotyping newborns contribute to this problem. We hypothesized that performing exome sequencing on selected individuals in families with multiple members affected by left-sided CHD, then filtering variants by population frequency, in silico predictive algorithms, and phenotypic annotations from publicly available databases would increase this yield and generate a list of candidate disease-causing variants that would show a high validation rate. In eight of the nineteen families in our study (42%), we established a well-known gene/phenotype link for a candidate variant or performed confirmation of a candidate variant's effect on protein function, including variants in genes not previously described or firmly established as disease genes in the body of CHD literature: BMP10, CASZ1, ROCK1 and SMYD1. Two plausible variants in different genes were found to segregate in the same family in two instances suggesting oligogenic inheritance. These results highlight the need for functional validation and demonstrate that in the era of next-generation sequencing, multiplex families with isolated CHD can still bring high yield to the discovery of novel disease genes.

Conflict of interest statement

The authors have declared that no competing interests exist.

Figures

Fig 1. The CASZ1 p.R25C variant in…
Fig 1. The CASZ1 p.R25C variant in family 16 causes mislocalization of the protein and reduced transcriptional transactivation.
A. The pedigree of family 16, showing the two affected individuals, proband [38] and his affected mother [39], for whom ES was performed. B. IF staining for FLAG in HEK293T (top) and H9c2 (bottom) cells transfected with either FLAG-tagged CASZ1 WT or FLAG-tagged CASZ1 p.R25C. Note the predominately nuclear staining in both cell types with CASZ1 WT and the increased cytoplasmic staining in cells with CASZ1 p.R25C. C. Western blot analysis of unfractionated and fractionated protein extracts from HEK293T cells transfected with either FLAG-tagged CASZ1 WT or CASZ1 p.R25C, and probed with anti-FLAG antibody to detect tagged CASZ1, a-tubulin as a cytoplasmic marker, and histone H3 (HH3) as a nuclear marker. A majority of CASZ1 WT was present in the nuclear fraction. The CASZ1 p.R25C signal was higher in the cytoplasmic fraction, consistent with the IF staining results. D. A luciferase assay, using the tyrosine hydroxyylase (TH) promoter as a target on a luciferase expression construct in HEK293T cells, showed that cotransfection of CASZ1 WT increased luciferase reporter signal by over 10-fold, while CASZ1 p.R25C did not significantly increase luciferase signal above background. The effect of CASZ1 WT was dosage sensitive (compare 0.5 mg vs 0.25 mg), and cotransfection of CASZ1 WT and p.R25C was not significantly different from CASZ1 WT alone. The graphed data represent the combined results from three independent experiments in which each condition was performed in triplicate. (Error bars indicate SEM, * p = 0.013, ** p = 0.004).
Fig 2. The heterozygous ROCK1 p.Lys695* stop…
Fig 2. The heterozygous ROCK1 p.Lys695* stop gain variant in family 154 caused reduced expression of ROCK1 in the proband.
A. Pedigree of family 154 showing the proband (517) and his affected identical twin brother (514) and their affected mother (515). ES was performed on individuals marked with an asterisk. B. A western blot of whole cell extracts from proband-derived lymphoblastoid cell lines (LCLs) and LCLs from seven unaffected individuals probed with anti-ROCK1 and anti-α-tubulin antibodies. Quantitation of ROCK1 signal relative to α-tubulin signal in each sample showed a ~50% reduction in ROCK1 in the proband relative to the mean value for the unaffected samples. The mean ROCK1/α-tubulin ratio for the unaffected samples was 0.53, SD±0.08, while the ratio in the proband sample was 0.23, greater than three standard deviations lower than the mean of the control samples.
Fig 3. Rare variants in SMYD1 and…
Fig 3. Rare variants in SMYD1 and BMP10 identified in family 346 are functionally damaging.
A. ES was performed on two BAV patients from family 346 (asterisks). Both individuals were heterozygous for the SMYD1 p.R441W and BMP10 p.R209C variants. B. In a luciferase assay, using a reporter construct driven by the SV40 promoter (pGL3-SV40), cotransfection of a SMYD1 WT expression construct resulted in a 50% reduction in luciferase activity, demonstrating that SMYD1 represses transcription from the SV40 promoter. Transfection of the SMYD1 p.R441W variant protein caused significantly greater repression (~70%) of the reporter activity, to the same level as that of the SMYD1 DCTD variant that lacks the C-terminal autoinhibitory domain of SMYD1. These results indicate that SMYD1 p.R441W is a gain-of-function variant. The data shown represent the mean of values from 3 independent experiments in which each of the samples was assayed in triplicate (error bars indicate standard deviation, **** p<0.0001, *** p<0.001). C. Western blots of whole cell extracts or filtered culture medium from HEK293T cells stably transfected with BMP10 WT or BMP10 p.R209C expression constructs showed reduced levels of both the cellular (prodomain) and secreted form (growth factor domain) of the p.R209C variant protein.

References

    1. Hoffman JI, Kaplan S. The incidence of congenital heart disease. Journal of the American College of Cardiology. 2002;39(12):1890–900. Epub 2002/06/27. doi: 10.1016/s0735-1097(02)01886-7 [pii]. .
    1. van der Linde D, Konings EE, Slager MA, Witsenburg M, Helbing WA, Takkenberg JJ, et al.. Birth prevalence of congenital heart disease worldwide: a systematic review and meta-analysis. Journal of the American College of Cardiology. 2011;58(21):2241–7. Epub 2011/11/15. doi: 10.1016/j.jacc.2011.08.025 .
    1. Hinton RB Jr., Martin LJ, Tabangin ME, Mazwi ML, Cripe LH, Benson DW. Hypoplastic left heart syndrome is heritable. Journal of the American College of Cardiology. 2007;50(16):1590–5. Epub 2007/10/16. doi: 10.1016/j.jacc.2007.07.021 .
    1. McBride KL, Marengo L, Canfield M, Langlois P, Fixler D, Belmont JW. Epidemiology of noncomplex left ventricular outflow tract obstruction malformations (aortic valve stenosis, coarctation of the aorta, hypoplastic left heart syndrome) in Texas, 1999–2001. Birth defects research Part A, Clinical and molecular teratology. 2005;73(8):555–61. doi: 10.1002/bdra.20169 ; PubMed Central PMCID: PMC1361303.
    1. McBride KL, Pignatelli R, Lewin M, Ho T, Fernbach S, Menesses A, et al.. Inheritance analysis of congenital left ventricular outflow tract obstruction malformations: Segregation, multiplex relative risk, and heritability. Am J Med Genet A. 2005;134A(2):180–6. doi: 10.1002/ajmg.a.30602 ; PubMed Central PMCID: PMC1361302.
    1. Pierpont ME, Brueckner M, Chung WK, Garg V, Lacro RV, McGuire AL, et al.. Genetic Basis for Congenital Heart Disease: Revisited: A Scientific Statement From the American Heart Association. Circulation. 2018;138(21):e653–e711. Epub 2018/12/21. doi: 10.1161/CIR.0000000000000606 ; PubMed Central PMCID: PMC6555769.
    1. Garg V, Kathiriya IS, Barnes R, Schluterman MK, King IN, Butler CA, et al.. GATA4 mutations cause human congenital heart defects and reveal an interaction with TBX5. Nature. 2003;424(6947):443–7. doi: 10.1038/nature01827 .
    1. Garg V, Muth AN, Ransom JF, Schluterman MK, Barnes R, King IN, et al.. Mutations in NOTCH1 cause aortic valve disease. Nature. 2005;437(7056):270–4. doi: 10.1038/nature03940 .
    1. Ching YH, Ghosh TK, Cross SJ, Packham EA, Honeyman L, Loughna S, et al.. Mutation in myosin heavy chain 6 causes atrial septal defect. Nat Genet. 2005;37(4):423–8. Epub 2005/03/01. doi: 10.1038/ng1526 .
    1. Matsson H, Eason J, Bookwalter CS, Klar J, Gustavsson P, Sunnegardh J, et al.. Alpha-cardiac actin mutations produce atrial septal defects. Hum Mol Genet. 2008;17(2):256–65. Epub 2007/10/20. doi: 10.1093/hmg/ddm302 .
    1. Schott JJ, Benson DW, Basson CT, Pease W, Silberbach GM, Moak JP, et al.. Congenital heart disease caused by mutations in the transcription factor NKX2-5. Science. 1998;281(5373):108–11. Epub 1998/07/04. doi: 10.1126/science.281.5373.108 .
    1. Pediatric Cardiac Genomics C, Gelb B, Brueckner M, Chung W, Goldmuntz E, Kaltman J, et al.. The Congenital Heart Disease Genetic Network Study: rationale, design, and early results. Circ Res. 2013;112(4):698–706. Epub 2013/02/16. doi: 10.1161/CIRCRESAHA.111.300297 ; PubMed Central PMCID: PMC3679175.
    1. Zaidi S, Choi M, Wakimoto H, Ma L, Jiang J, Overton JD, et al.. De novo mutations in histone-modifying genes in congenital heart disease. Nature. 2013;498(7453):220–3. doi: 10.1038/nature12141 ; PubMed Central PMCID: PMC3706629.
    1. Jin SC, Homsy J, Zaidi S, Lu Q, Morton S, DePalma SR, et al.. Contribution of rare inherited and de novo variants in 2,871 congenital heart disease probands. Nat Genet. 2017;49(11):1593–601. Epub 2017/10/11. doi: 10.1038/ng.3970 ; PubMed Central PMCID: PMC5675000.
    1. Homsy J, Zaidi S, Shen Y, Ware JS, Samocha KE, Karczewski KJ, et al.. De novo mutations in congenital heart disease with neurodevelopmental and other congenital anomalies. Science. 2015;350(6265):1262–6. Epub 2016/01/20. doi: 10.1126/science.aac9396 .
    1. Sifrim A, Hitz MP, Wilsdon A, Breckpot J, Turki SH, Thienpont B, et al.. Distinct genetic architectures for syndromic and nonsyndromic congenital heart defects identified by exome sequencing. Nat Genet. 2016;48(9):1060–5. Epub 2016/08/02. doi: 10.1038/ng.3627 ; PubMed Central PMCID: PMC5988037.
    1. Quinlan AR, Hall IM. BEDTools: a flexible suite of utilities for comparing genomic features. Bioinformatics. 2010;26(6):841–2. Epub 2010/01/30. doi: 10.1093/bioinformatics/btq033 ; PubMed Central PMCID: PMC2832824.
    1. Guo J, Li Z, Hao C, Guo R, Hu X, Qian S, et al.. A novel de novo CASZ1 heterozygous frameshift variant causes dilated cardiomyopathy and left ventricular noncompaction cardiomyopathy. Mol Genet Genomic Med. 2019;7(8):e828. Epub 2019/07/04. doi: 10.1002/mgg3.828 ; PubMed Central PMCID: PMC6687865.
    1. Huang RT, Xue S, Wang J, Gu JY, Xu JH, Li YJ, et al.. CASZ1 loss-of-function mutation associated with congenital heart disease. Gene. 2016;595(1):62–8. Epub 2016/10/04. doi: 10.1016/j.gene.2016.09.044 .
    1. Qiu XB, Qu XK, Li RG, Liu H, Xu YJ, Zhang M, et al.. CASZ1 loss-of-function mutation contributes to familial dilated cardiomyopathy. Clin Chem Lab Med. 2017;55(9):1417–25. Epub 2017/01/19. doi: 10.1515/cclm-2016-0612 .
    1. Dorr KM, Amin NM, Kuchenbrod LM, Labiner H, Charpentier MS, Pevny LH, et al.. Casz1 is required for cardiomyocyte G1-to-S phase progression during mammalian cardiac development. Development. 2015;142(11):2037–47. Epub 2015/05/09. doi: 10.1242/dev.119107 ; PubMed Central PMCID: PMC4460738.
    1. Liu Z, Li W, Ma X, Ding N, Spallotta F, Southon E, et al.. Essential role of the zinc finger transcription factor Casz1 for mammalian cardiac morphogenesis and development. J Biol Chem. 2014;289(43):29801–16. Epub 2014/09/06. doi: 10.1074/jbc.M114.570416 ; PubMed Central PMCID: PMC4207993.
    1. Li AH, Hanchard NA, Furthner D, Fernbach S, Azamian M, Nicosia A, et al.. Whole exome sequencing in 342 congenital cardiac left sided lesion cases reveals extensive genetic heterogeneity and complex inheritance patterns. Genome Med. 2017;9(1):95. Epub 2017/11/02. doi: 10.1186/s13073-017-0482-5 ; PubMed Central PMCID: PMC5664429.
    1. Phillips HM, Mahendran P, Singh E, Anderson RH, Chaudhry B, Henderson DJ. Neural crest cells are required for correct positioning of the developing outflow cushions and pattern the arterial valve leaflets. Cardiovasc Res. 2013;99(3):452–60. Epub 2013/06/01. doi: 10.1093/cvr/cvt132 ; PubMed Central PMCID: PMC3718324.
    1. Lalani SR, Ware SM, Wang X, Zapata G, Tian Q, Franco LM, et al.. MCTP2 is a dosage-sensitive gene required for cardiac outflow tract development. Hum Mol Genet. 2013;22(21):4339–48. doi: 10.1093/hmg/ddt283 ; PubMed Central PMCID: PMC3792692.
    1. Gould RA, Aziz H, Woods CE, Seman-Senderos MA, Sparks E, Preuss C, et al.. ROBO4 variants predispose individuals to bicuspid aortic valve and thoracic aortic aneurysm. Nat Genet. 2019;51(1):42–50. Epub 2018/11/21. doi: 10.1038/s41588-018-0265-y ; PubMed Central PMCID: PMC6309588.
    1. Hildebrand JD, Soriano P. Overlapping and unique roles for C-terminal binding protein 1 (CtBP1) and CtBP2 during mouse development. Mol Cell Biol. 2002;22(15):5296–307. Epub 2002/07/09. doi: 10.1128/MCB.22.15.5296-5307.2002 ; PubMed Central PMCID: PMC133942.
    1. Gottlieb PD, Pierce SA, Sims RJ, Yamagishi H, Weihe EK, Harriss JV, et al.. Bop encodes a muscle-restricted protein containing MYND and SET domains and is essential for cardiac differentiation and morphogenesis. Nat Genet. 2002;31(1):25–32. Epub 2002/03/30. doi: 10.1038/ng866 .
    1. Chen H, Shi S, Acosta L, Li W, Lu J, Bao S, et al.. BMP10 is essential for maintaining cardiac growth during murine cardiogenesis. Development. 2004;131(9):2219–31. Epub 2004/04/10. doi: 10.1242/dev.01094 ; PubMed Central PMCID: PMC2628765.
    1. Theis JL, Zimmermann MT, Evans JM, Eckloff BW, Wieben ED, Qureshi MY, et al.. Recessive MYH6 Mutations in Hypoplastic Left Heart With Reduced Ejection Fraction. Circ Cardiovasc Genet. 2015;8(4):564–71. Epub 2015/06/19. doi: 10.1161/CIRCGENETICS.115.001070 .
    1. Liu H, Giguet-Valard AG, Simonet T, Szenker-Ravi E, Lambert L, Vincent-Delorme C, et al.. Next-generation sequencing in a series of 80 fetuses with complex cardiac malformations and/or heterotaxy. Hum Mutat. 2020;41(12):2167–78. Epub 2020/11/02. doi: 10.1002/humu.24132 .
    1. Quintero-Rivera F, Xi QJ, Keppler-Noreuil KM, Lee JH, Higgins AW, Anchan RM, et al.. MATR3 disruption in human and mouse associated with bicuspid aortic valve, aortic coarctation and patent ductus arteriosus. Hum Mol Genet. 2015;24(8):2375–89. Epub 2015/01/13. doi: 10.1093/hmg/ddv004 ; PubMed Central PMCID: PMC4380077.
    1. McBride KL, Riley MF, Zender GA, Fitzgerald-Butt SM, Towbin JA, Belmont JW, et al.. NOTCH1 mutations in individuals with left ventricular outflow tract malformations reduce ligand-induced signaling. Hum Mol Genet. 2008;17(18):2886–93. Epub 2008/07/03. doi: 10.1093/hmg/ddn187 ; PubMed Central PMCID: PMC2722892.
    1. Kerstjens-Frederikse WS, van de Laar IM, Vos YJ, Verhagen JM, Berger RM, Lichtenbelt KD, et al.. Cardiovascular malformations caused by NOTCH1 mutations do not keep left: data on 428 probands with left-sided CHD and their families. Genet Med. 2016;18(9):914–23. Epub 2016/01/29. doi: 10.1038/gim.2015.193 .
    1. Fischer A, Steidl C, Wagner TU, Lang E, Jakob PM, Friedl P, et al.. Combined loss of Hey1 and HeyL causes congenital heart defects because of impaired epithelial to mesenchymal transition. Circ Res. 2007;100(6):856–63. Epub 2007/02/17. doi: 10.1161/01.RES.0000260913.95642.3b .
    1. Kennedy L, Kaltenbrun E, Greco TM, Temple B, Herring LE, Cristea IM, et al.. Formation of a TBX20-CASZ1 protein complex is protective against dilated cardiomyopathy and critical for cardiac homeostasis. PLoS genetics. 2017;13(9):e1007011. Epub 2017/09/26. doi: 10.1371/journal.pgen.1007011 ; PubMed Central PMCID: PMC5629033.
    1. Duque Lasio ML, Kozel BA. Elastin-driven genetic diseases. Matrix Biol. 2018;71–72:144–60. Epub 2018/03/05. doi: 10.1016/j.matbio.2018.02.021 .
    1. Olson TM, Michels VV, Urban Z, Csiszar K, Christiano AM, Driscoll DJ, et al.. A 30 kb deletion within the elastin gene results in familial supravalvular aortic stenosis. Hum Mol Genet. 1995;4(9):1677–9. Epub 1995/09/01. doi: 10.1093/hmg/4.9.1677 .
    1. Krishnamurthy VK, Opoka AM, Kern CB, Guilak F, Narmoneva DA, Hinton RB. Maladaptive matrix remodeling and regional biomechanical dysfunction in a mouse model of aortic valve disease. Matrix Biol. 2012;31(3):197–205. Epub 2012/01/24. doi: 10.1016/j.matbio.2012.01.001 ; PubMed Central PMCID: PMC3295865.
    1. Liu Z, Zhang X, Lei H, Lam N, Carter S, Yockey O, et al.. CASZ1 induces skeletal muscle and rhabdomyosarcoma differentiation through a feed-forward loop with MYOD and MYOG. Nature communications. 2020;11(1):911. Epub 2020/02/16. doi: 10.1038/s41467-020-14684-4 ; PubMed Central PMCID: PMC7021771.
    1. Liu Z, Lam N, Wang E, Virden RA, Pawel B, Attiyeh EF, et al.. Identification of CASZ1 NES reveals potential mechanisms for loss of CASZ1 tumor suppressor activity in neuroblastoma. Oncogene. 2017;36(1):97–109. Epub 2016/06/09. doi: 10.1038/onc.2016.179 ; PubMed Central PMCID: PMC5140774.
    1. Warner LR, Babbitt CC, Primus AE, Severson TF, Haygood R, Wray GA. Functional consequences of genetic variation in primates on tyrosine hydroxylase (TH) expression in vitro. Brain Res. 2009;1288:1–8. Epub 2009/07/14. doi: 10.1016/j.brainres.2009.06.086 .
    1. Shimizu Y, Thumkeo D, Keel J, Ishizaki T, Oshima H, Oshima M, et al.. ROCK-I regulates closure of the eyelids and ventral body wall by inducing assembly of actomyosin bundles. J Cell Biol. 2005;168(6):941–53. Epub 2005/03/09. doi: 10.1083/jcb.200411179 ; PubMed Central PMCID: PMC2171774.
    1. Kurosaki T, Popp MW, Maquat LE. Quality and quantity control of gene expression by nonsense-mediated mRNA decay. Nat Rev Mol Cell Biol. 2019;20(7):406–20. Epub 2019/04/18. doi: 10.1038/s41580-019-0126-2 ; PubMed Central PMCID: PMC6855384.
    1. Espino-Saldana AE, Duran-Rios K, Olivares-Hernandez E, Rodriguez-Ortiz R, Arellano-Carbajal F, Martinez-Torres A. Temporal and spatial expression of zebrafish mctp genes and evaluation of frameshift alleles of mctp2b. Gene. 2020;738:144371. Epub 2020/02/01. doi: 10.1016/j.gene.2020.144371 .
    1. Monies D, Abouelhoda M, AlSayed M, Alhassnan Z, Alotaibi M, Kayyali H, et al.. The landscape of genetic diseases in Saudi Arabia based on the first 1000 diagnostic panels and exomes. Hum Genet. 2017;136(8):921–39. Epub 2017/06/11. doi: 10.1007/s00439-017-1821-8 ; PubMed Central PMCID: PMC5502059.
    1. Park CY, Pierce SA, von Drehle M, Ivey KN, Morgan JA, Blau HM, et al.. skNAC, a Smyd1-interacting transcription factor, is involved in cardiac development and skeletal muscle growth and regeneration. Proceedings of the National Academy of Sciences of the United States of America. 2010;107(48):20750–5. Epub 2010/11/13. doi: 10.1073/pnas.1013493107 ; PubMed Central PMCID: PMC2996447.
    1. Rasmussen TL, Ma Y, Park CY, Harriss J, Pierce SA, Dekker JD, et al.. Smyd1 facilitates heart development by antagonizing oxidative and ER stress responses. PloS one. 2015;10(3):e0121765. Epub 2015/03/25. doi: 10.1371/journal.pone.0121765 ; PubMed Central PMCID: PMC4372598.
    1. Neuhaus H, Rosen V, Thies RS. Heart specific expression of mouse BMP-10 a novel member of the TGF-beta superfamily. Mech Dev. 1999;80(2):181–4. Epub 1999/03/12. doi: 10.1016/s0925-4773(98)00221-4 .
    1. Susan-Resiga D, Essalmani R, Hamelin J, Asselin MC, Benjannet S, Chamberland A, et al.. Furin is the major processing enzyme of the cardiac-specific growth factor bone morphogenetic protein 10. J Biol Chem. 2011;286(26):22785–94. Epub 2011/05/10. doi: 10.1074/jbc.M111.233577 ; PubMed Central PMCID: PMC3123046.
    1. Weber D, Wiese C, Gessler M. Hey bHLH transcription factors. Curr Top Dev Biol. 2014;110:285–315. Epub 2014/09/25. doi: 10.1016/B978-0-12-405943-6.00008-7 .
    1. Kokubo H, Miyagawa-Tomita S, Tomimatsu H, Nakashima Y, Nakazawa M, Saga Y, et al.. Targeted disruption of hesr2 results in atrioventricular valve anomalies that lead to heart dysfunction. Circ Res. 2004;95(5):540–7. Epub 2004/08/07. doi: 10.1161/01.RES.0000141136.85194.f0 .
    1. Brenner JI, Berg KA, Schneider DS, Clark EB, Boughman JA. Cardiac malformations in relatives of infants with hypoplastic left-heart syndrome. American journal of diseases of children (1960). 1989;143(12):1492–4. Epub 1989/12/01. doi: 10.1001/archpedi.1989.02150240114030 .
    1. Hinton RB, Martin LJ, Rame-Gowda S, Tabangin ME, Cripe LH, Benson DW. Hypoplastic left heart syndrome links to chromosomes 10q and 6q and is genetically related to bicuspid aortic valve. Journal of the American College of Cardiology. 2009;53(12):1065–71. doi: 10.1016/j.jacc.2008.12.023 ; PubMed Central PMCID: PMC2703749.
    1. Kelle AM, Qureshi MY, Olson TM, Eidem BW, O’Leary PW. Familial Incidence of Cardiovascular Malformations in Hypoplastic Left Heart Syndrome. The American journal of cardiology. 2015;116(11):1762–6. Epub 2015/10/05. doi: 10.1016/j.amjcard.2015.08.045 .
    1. Lewin MB, McBride KL, Pignatelli R, Fernbach S, Combes A, Menesses A, et al.. Echocardiographic evaluation of asymptomatic parental and sibling cardiovascular anomalies associated with congenital left ventricular outflow tract lesions. Pediatrics. 2004;114(3):691–6. doi: 10.1542/peds.2003-0782-L ; PubMed Central PMCID: PMC1361301.
    1. Liu Z, Naranjo A, Thiele CJ. CASZ1b, the short isoform of CASZ1 gene, coexpresses with CASZ1a during neurogenesis and suppresses neuroblastoma cell growth. PloS one. 2011;6(4):e18557. Epub 2011/04/15. doi: 10.1371/journal.pone.0018557 ; PubMed Central PMCID: PMC3072398.
    1. Mattar P, Stevanovic M, Nad I, Cayouette M. Casz1 controls higher-order nuclear organization in rod photoreceptors. Proceedings of the National Academy of Sciences of the United States of America. 2018;115(34):E7987–e96. Epub 2018/08/04. doi: 10.1073/pnas.1803069115 ; PubMed Central PMCID: PMC6112687.
    1. Amano M, Chihara K, Nakamura N, Fukata Y, Yano T, Shibata M, et al.. Myosin II activation promotes neurite retraction during the action of Rho and Rho-kinase. Genes Cells. 1998;3(3):177–88. Epub 1998/06/10. doi: 10.1046/j.1365-2443.1998.00181.x
    1. Chang J, Xie M, Shah VR, Schneider MD, Entman ML, Wei L, et al.. Activation of Rho-associated coiled-coil protein kinase 1 (ROCK-1) by caspase-3 cleavage plays an essential role in cardiac myocyte apoptosis. Proceedings of the National Academy of Sciences of the United States of America. 2006;103(39):14495–500. Epub 2006/09/20. doi: 10.1073/pnas.0601911103 ; PubMed Central PMCID: PMC1599988.
    1. Bailey KE, MacGowan GA, Tual-Chalot S, Phillips L, Mohun TJ, Henderson DJ, et al.. Disruption of embryonic ROCK signaling reproduces the sarcomeric phenotype of hypertrophic cardiomyopathy. JCI Insight. 2019;5(8). Epub 2019/03/06. doi: 10.1172/jci.insight.125172 ; PubMed Central PMCID: PMC6538384.
    1. Yugawa T, Nishino K, Ohno S, Nakahara T, Fujita M, Goshima N, et al.. Noncanonical NOTCH signaling limits self-renewal of human epithelial and induced pluripotent stem cells through ROCK activation. Mol Cell Biol. 2013;33(22):4434–47. Epub 2013/09/11. doi: 10.1128/MCB.00577-13 ; PubMed Central PMCID: PMC3838179.
    1. Riley MF, McBride KL, Cole SE. NOTCH1 missense alleles associated with left ventricular outflow tract defects exhibit impaired receptor processing and defective EMT. Biochimica et biophysica acta. 2011;1812(1):121–9. doi: 10.1016/j.bbadis.2010.10.002 ; PubMed Central PMCID: PMC3180902.
    1. Mead TJ, Yutzey KE. Notch pathway regulation of neural crest cell development in vivo. Dev Dyn. 2012;241(2):376–89. Epub 2012/01/26. doi: 10.1002/dvdy.23717 ; PubMed Central PMCID: PMC3266628.
    1. Phan D, Rasmussen TL, Nakagawa O, McAnally J, Gottlieb PD, Tucker PW, et al.. BOP, a regulator of right ventricular heart development, is a direct transcriptional target of MEF2C in the developing heart. Development. 2005;132(11):2669–78. Epub 2005/05/14. doi: 10.1242/dev.01849 .
    1. Sharma A, Wasson LK, Willcox JA, Morton SU, Gorham JM, DeLaughter DM, et al.. GATA6 mutations in hiPSCs inform mechanisms for maldevelopment of the heart, pancreas, and diaphragm. Elife. 2020;9. Epub 2020/10/16. doi: 10.7554/eLife.53278 ; PubMed Central PMCID: PMC7593088.
    1. Qu XK, Qiu XB, Yuan F, Wang J, Zhao CM, Liu XY, et al.. A novel NKX2.5 loss-of-function mutation associated with congenital bicuspid aortic valve. The American journal of cardiology. 2014;114(12):1891–5. Epub 2014/12/03. doi: 10.1016/j.amjcard.2014.09.028 .
    1. Huang J, Elicker J, Bowens N, Liu X, Cheng L, Cappola TP, et al.. Myocardin regulates BMP10 expression and is required for heart development. J Clin Invest. 2012;122(10):3678–91. Epub 2012/09/22. doi: 10.1172/JCI63635 ; PubMed Central PMCID: PMC3461917.
    1. LaHaye S, Corsmeier D, Basu M, Bowman JL, Fitzgerald-Butt S, Zender G, et al.. Utilization of Whole Exome Sequencing to Identify Causative Mutations in Familial Congenital Heart Disease. Circ Cardiovasc Genet. 2016;9(4):320–9. Epub 2016/07/16. doi: 10.1161/CIRCGENETICS.115.001324 ; PubMed Central PMCID: PMC5412122.
    1. Liu X, Yagi H, Saeed S, Bais AS, Gabriel GC, Chen Z, et al.. The complex genetics of hypoplastic left heart syndrome. Nat Genet. 2017;49(7):1152–9. Epub 2017/05/23. doi: 10.1038/ng.3870 ; PubMed Central PMCID: PMC5737968.
    1. Kelly BJ, Fitch JR, Hu Y, Corsmeier DJ, Zhong H, Wetzel AN, et al.. Churchill: an ultra-fast, deterministic, highly scalable and balanced parallelization strategy for the discovery of human genetic variation in clinical and population-scale genomics. Genome Biol. 2015;16(1):6. Epub 2015/01/21. doi: 10.1186/s13059-014-0577-x ; PubMed Central PMCID: PMC4333267.
    1. Van der Auwera GA, Carneiro MO, Hartl C, Poplin R, Del Angel G, Levy-Moonshine A, et al.. From FastQ data to high confidence variant calls: the Genome Analysis Toolkit best practices pipeline. Curr Protoc Bioinformatics. 2013;43(1110):11.0.1–.0.33. Epub 2014/11/29. doi: 10.1002/0471250953.bi1110s43 ; PubMed Central PMCID: PMC4243306.
    1. Cingolani P, Platts A, Wang le L, Coon M, Nguyen T, Wang L, et al.. A program for annotating and predicting the effects of single nucleotide polymorphisms, SnpEff: SNPs in the genome of Drosophila melanogaster strain w1118; iso-2; iso-3. Fly (Austin). 2012;6(2):80–92. Epub 2012/06/26. doi: 10.4161/fly.19695 ; PubMed Central PMCID: PMC3679285.
    1. Karczewski KJ, Francioli LC, Tiao G, Cummings BB, Alfoldi J, Wang Q, et al.. The mutational constraint spectrum quantified from variation in 141,456 humans. Nature. 2020;581(7809):434–43. Epub 2020/05/29. doi: 10.1038/s41586-020-2308-7 ; PubMed Central PMCID: PMC7334197.
    1. Kircher M, Witten DM, Jain P, O’Roak BJ, Cooper GM, Shendure J. A general framework for estimating the relative pathogenicity of human genetic variants. Nat Genet. 2014;46(3):310–5. Epub 2014/02/04. doi: 10.1038/ng.2892 ; PubMed Central PMCID: PMC3992975.
    1. Liu X, Wu C, Li C, Boerwinkle E. dbNSFP v3.0: A One-Stop Database of Functional Predictions and Annotations for Human Nonsynonymous and Splice-Site SNVs. Hum Mutat. 2016;37(3):235–41. Epub 2015/11/12. doi: 10.1002/humu.22932 ; PubMed Central PMCID: PMC4752381.
    1. Blue GM, Kirk EP, Giannoulatou E, Dunwoodie SL, Ho JW, Hilton DC, et al.. Targeted next-generation sequencing identifies pathogenic variants in familial congenital heart disease. J Am Coll Cardiol. 2014;64(23):2498–506. Epub 2014/12/17. doi: 10.1016/j.jacc.2014.09.048 .

Source: PubMed

3
订阅