3D Printing Applications in Minimally Invasive Spine Surgery

Megan R Hsu, Meraaj S Haleem, Wellington Hsu, Megan R Hsu, Meraaj S Haleem, Wellington Hsu

Abstract

3D printing (3DP) technology continues to gain popularity among medical specialties as a useful tool to improve patient care. The field of spine surgery is one discipline that has utilized this; however, information regarding the use of 3DP in minimally invasive spine surgery (MISS) is limited. 3D printing is currently being utilized in spine surgery to create biomodels, hardware templates and guides, and implants. Minimally invasive spine surgeons have begun to adopt 3DP technology, specifically with the use of biomodeling to optimize preoperative planning. Factors limiting widespread adoption of 3DP include increased time, cost, and the limited range of diagnoses in which 3DP has thus far been utilized. 3DP technology has become a valuable tool utilized by spine surgeons, and there are limitless directions in which this technology can be applied to minimally invasive spine surgery.

Figures

Figure 1
Figure 1
(a) Subtractive manufacturing versus (b) additive manufacturing (source: reproduced and adapted with permission from Ambrosi et al.).
Figure 2
Figure 2
(a) Scoliosis. (b) Atlas neoplasm. (c) and (d) Cervical fracture-dislocation (source: reproduced and adapted with permission from Wang et al.).
Figure 3
Figure 3
Surgical simulation demonstrating virtual channel placement (a–d). 3DP thoracic vertebra for preoperative planning (e) (source: reproduced and adapted with permission from Zhao et al.).
Figure 4
Figure 4
3DP drill guide custom designed to fit a biomodel of 57-year-old male with atlantoaxial dislocation (source: reproduced and adapted with permission from Guo et al.).
Figure 5
Figure 5
Navigation template-assisted pedicle screw fixation in upper cervical spine. (a) Navigation template pressed to fit with vertebra. (b) Placement of navigation protective sleeve. (c) Kirschner wire perforated along protective sleeve. (d) Pedicle screw fixation (source: reproduced and adapted with permission from Guo et al.).
Figure 6
Figure 6
CT with proposed 3DP titanium C1-C2 prosthesis overlaid (source: reproduced and adapted with permission from Phan et al.).
Figure 7
Figure 7
Intraoperative implantation of 3DP custom printed spinal prosthesis for a posterior C1-C2 fusion (source: reproduced and adapted with permission from Phan et al.).

References

    1. Alcisto J., Enriquez A., Garcia H., et al. Tensile properties and microstructures of laser-formed Ti-6Al-4V. Journal of Materials Engineering and Performance. 2011;20(2):203–212. doi: 10.1007/s11665-010-9670-9.
    1. Alberti C. Three-dimensional CT and structure models. British Journal of Radiology. 1980;53(627):261–262.
    1. Hoang D., et al. Surgical applications of three-dimensional printing: a review of the current literature & how to get started. Annals of Translational Medicine. 2016;4(23)
    1. D'Urso P. S., Williamson O. D., Thompson R. G. Biomodeling as an aid to spinal instrumentation. The Spine Journal. 2005;30(24):2841–2845. doi: 10.1097/01.brs.0000190886.56895.3d.
    1. Izatt M. T., Thorpe P. L. P. J., Thompson R. G., et al. The use of physical biomodelling in complex spinal surgery. European Spine Journal. 2007;16(9):1507–1518. doi: 10.1007/s00586-006-0289-3.
    1. Yang M., Li C., Li Y., et al. Application of 3D rapid prototyping technology in posterior corrective surgery for Lenke 1 adolescent idiopathic scoliosis patients. Medicine. 2015;94(8) doi: 10.1097/MD.0000000000000582.
    1. Guarino J., Tennyson S., McCain G., Bond L., Shea K., King H. Rapid prototyping technology for surgeries of the pediatric spine and pelvis: Benefits analysis. Journal of Pediatric Orthopaedics. 2007;27(8):955–960. doi: 10.1097/bpo.0b013e3181594ced.
    1. Tack P., Victor J., Gemmel P., Annemans L. 3D-printing techniques in a medical setting: A systematic literature review. Biomedical Engineering Online. 2016;15(1):p. 115. doi: 10.1186/s12938-016-0236-4.
    1. Mao K., Wang Y., Xiao S., et al. Clinical application of computer-designed polystyrene models in complex severe spinal deformities: A pilot study. European Spine Journal. 2010;19(5):797–802. doi: 10.1007/s00586-010-1359-0.
    1. Mizutani J., Matsubara T., Fukuoka M., et al. Application of full-scale three-dimensional models in patients with rheumatoid cervical spine. European Spine Journal. 2008;17(5):644–649. doi: 10.1007/s00586-008-0611-3.
    1. Wang Y.-T., Yang X.-J., Yan B., Zeng T.-H., Qiu Y.-Y., Chen S.-J. Clinical application of three-dimensional printing in the personalized treatment of complex spinal disorders. Chinese Journal of Traumatology (English Edition) 2016;19(1):31–34. doi: 10.1016/j.cjtee.2015.09.009.
    1. Smith Z. A., Fessler R. G. Paradigm changes in spine surgery-evolution of minimally invasive techniques. Nature Reviews Neurology. 2012;8(8):443–450. doi: 10.1038/nrneurol.2012.110.
    1. Zhao W., Shen C., Cai R., et al. Minimally invasive surgery for resection of ossification of the ligamentum flavum in the thoracic spine. Wideochirurgia i Inne Techniki Maloinwazyjne. 2017;12(1):96–105. doi: 10.5114/wiitm.2017.66473.
    1. Ling Q., He E., Ouyang H., Guo J., Yin Z., Huang W. Design of mulitlevel OLF approach (“V”-shaped decompressive laminoplasty) based on 3D printing technology. European Spine Journal. 2017:1–7. doi: 10.1007/s00586-017-5234-0.
    1. Wilasrusmee C., Suvikrom J., Suthakorn J., et al. Three-dimensional aortic aneurysm model and endovascular repair: An educational tool for surgical trainees. International Journal of Angiology. 2008;17(3):129–133. doi: 10.1055/s-0031-1278295.
    1. Kawaguchi Y., Nakano M., Yasuda T., Seki S., Hori T., Kimura T. Development of a new technique for pedicle screw and magerl screw insertion using a 3-dimensional image guide. The Spine Journal. 2012;37(23):1983–1988. doi: 10.1097/BRS.0b013e31825ab547.
    1. Lu S., Xu Y. Q., Lu W. W., et al. A novel patient-specific navigational template for cervical pedicle screw placement. The Spine Journal. 2009;34(26):E959–E964. doi: 10.1097/BRS.0b013e3181c09985.
    1. Sugawara T., Higashiyama N., Kaneyama S., et al. Multistep pedicle screw insertion procedure with patient-specific lamina fit-and-lock templates for the thoracic spine: Clinical article. Journal of Neurosurgery: Spine. 2013;19(2):185–190. doi: 10.3171/2013.4.SPINE121059.
    1. Kaneyama S., Sugawara T., Sumi M. Safe and accurate midcervical pedicle screw insertion procedure with the patient-specific screw guide template system. The Spine Journal. 2015;40(6):E341–E348. doi: 10.1097/BRS.0000000000000772.
    1. Lu S., Xu Y. Q., Zhang Y. Z., Xie L., Guo H., Li D. P. A novel computer-assisted drill guide template for placement of C2 laminar screws. European Spine Journal. 2009;18(9):1379–1385. doi: 10.1007/s00586-009-1051-4.
    1. Merc M., Drstvensek I., Vogrin M., Brajlih T., Recnik G. A multi-level rapid prototyping drill guide template reduces the perforation risk of pedicle screw placement in the lumbar and sacral spine. Archives of Orthopaedic and Trauma Surgery. 2013;133(7):893–899. doi: 10.1007/s00402-013-1755-0.
    1. Lu S., Y. Q. Xu, Y. Z. Zhang, et al. Rapid prototyping drill guide template for lumbar pedicle screw placement. Chinese Journal of Traumatology. 2009;12(3):177–180.
    1. Guo F., Dai J., Zhang J., et al. Individualized 3D printing navigation template for pedicle screw fixation in upper cervical spine. PLoS ONE. 2017;12(2) doi: 10.1371/journal.pone.0171509.e0171509
    1. Maughan P. H., Ducruet A. F., Elhadi A. M., et al. Multimodality management of vertebral artery injury sustained during cervical or craniocervical surgery. Neurosurgery. 2013;73(suppl_2):ons271–ons282. doi: 10.1227/01.neu.0000431468.74591.5f.
    1. Provaggi E., Leong J. J. H., Kalaskar D. M. Applications of 3D printing in the management of severe spinal conditions. Proceedings of the Institution of Mechanical Engineers, Part H: Journal of Engineering in Medicine. 2017;231(6):471–486. doi: 10.1177/0954411916667761.
    1. Jakus A. E., Shah R. N. Multi and mixed 3D-printing of graphene-hydroxyapatite hybrid materials for complex tissue engineering. Journal of Biomedical Materials Research Part A. 2017;105(1):274–283. doi: 10.1002/jbm.a.35684.
    1. Phan K., Sgro A., Maharaj M. M., D’Urso P., Mobbs R. J. Application of a 3D custom printed patient specific spinal implant for C1/2 arthrodesis. Journal of Spine Surgery. 2016;2(4):314–318. doi: 10.21037/jss.2016.12.06.
    1. Xu N., Wei F., Liu X., et al. Reconstruction of the upper cervical spine using a personalized 3D-printed vertebral body in an adolescent with ewing sarcoma. The Spine Journal. 2016;41(1):E50–E54. doi: 10.1097/BRS.0000000000001179.
    1. Spetzger U., Frasca M., König S. A. Surgical planning, manufacturing and implantation of an individualized cervical fusion titanium cage using patient-specific data. European Spine Journal. 2016;25(7):2239–2246. doi: 10.1007/s00586-016-4473-9.
    1. Wang X., Xu S., Zhou S., et al. Topological design and additive manufacturing of porous metals for bone scaffolds and orthopaedic implants: a review. Biomaterials. 2016;83(6):127–141. doi: 10.1016/j.biomaterials.2016.01.012.
    1. K. McGilvray. Bony ingrowth potential of 3D printed porous titanium alloy: a direct comparison of interbody cage materials in an in vivo ovine lumbar fusion model. The Spine Journal. 2018 doi: 10.1016/j.spinee.2018.02.018.
    1. MacBarb R. F., Lindsey D. P., Woods S. A., Lalor P. A., Gundanna M. I., Yerby S. A. Fortifying the bone-implant interface part 2: An in vivo evaluation of 3D-printed and TPS-coated triangular implants. International Journal of Spine Surgery. 2017;11(3):116–128. doi: 10.14444/4016.
    1. Tannoury C. A., An H. S. Complications with the use of bone morphogenetic protein 2 (BMP-2) in spine surgery. The Spine Journal. 2014;14(3):552–559. doi: 10.1016/j.spinee.2013.08.060.
    1. Gupta A., Kukkar N., Sharif K., Main B. J., Albers C. E., El-Amin S. F. Bone graft substitutes for spine fusion: A brief review. World Journal of Orthopedics. 2015;6(6):449–456. doi: 10.5312/wjo.v6.i6.449.
    1. Boden S. D. The ABCs of BMPs. Orthopaedic Nursing. 2005;24(1):49–52, quiz 53-54. doi: 10.1097/00006416-200501000-00014.
    1. Jakus A. E., Rutz A. L., Jordan S. W., et al. Hyperelastic “bone”: A highly versatile, growth factor-free, osteoregenerative, scalable, and surgically friendly biomaterial. Science Translational Medicine. 2016;8(358):p. 358ra127. doi: 10.1126/scitranslmed.aaf7704.358ra128
    1. Wilcox B., Mobbs R. J., Wu A., Phan K. Systematic review of 3D printing in spinal surgery: the current state of play. Journal of Spine Surgery. 2017;3(3):433–443. doi: 10.21037/jss.2017.09.01.
    1. Grant C. A., Izatt M. T., Labrom R. D., Askin G. N., Glatt V. Use of 3D Printing in Complex Spinal Surgery: Historical Perspectives, Current Usage, and Future Directions. Techniques in Orthopaedics. 2016;31(3):172–180. doi: 10.1097/BTO.0000000000000186.
    1. Martelli N., Serrano C., Van Den Brink H., et al. Advantages and disadvantages of 3-dimensional printing in surgery: A systematic review. Surgery. 2016;159(6):1485–1500. doi: 10.1016/j.surg.2015.12.017.

Source: PubMed

3
订阅