Origin of heart rate variability and turbulence: an appraisal of autonomic modulation of cardiovascular function

Federico Lombardi, Phyllis K Stein, Federico Lombardi, Phyllis K Stein

Abstract

Heart period constantly changes on a beat to beat basis, due to autonomic influences on the sinoatrial node, and changes can be quantified as heart rate variability (HRV). In addition, after a premature ventricular beat, there are reproducible variations in RR interval, also due to baroreflex mediated autonomic influences on the sinoatrial node, that can be measured as heart rate turbulence (HRT). Impaired autonomic function as measured by HRV and HRT has proven to predict adverse outcomes in clinical settings. The ability of reduced HRV and HRT to predict adverse outcomes has been explained by their dependency on vagal mechanisms that could reflect an increased sympathetic and a reduced vagal modulation of sinus node, thus favoring cardiac electrical instability. Analysis of non-linear dynamics of HRV has also been utilized to describe the fractal like characteristic of the variability signal and proven effective in identify patients at risk for sudden cardiac death. Despite the clinical validity of these measures, it has also been evident that the relationship between neural input and sinus node responsiveness is extremely complex and variable in different clinical conditions. Thus, abnormal HRV or HRT on a clinical Holter recordings may reflect non-neural as well as autonomic mechanisms, and this also needs to be taken into account when interpreting any findings. However, under controlled conditions, the computation of the low and high frequency components of HRV and of their normalized powers or ratio seems capable of providing valid information on sympatho-vagal balance in normal subjects, as well as in most patients with a preserved left ventricular function. Thus, analysis of HRV does provide a unique tool to specifically assess autonomic control mechanisms in association with various perturbations. In conclusion, HRV measures are of substantial utility to identify patients with an increased cardiac mortality and to evaluate autonomic control mechanisms, but their ability to capture specific levels of autonomic control may be limited to controlled laboratory studies in relatively healthy subjects.

Keywords: autonomic modulation; baroreflex mechanisms; non-invasive evaluation of cardiac function; spectral analysis; sympathetic and vagal control.

Figures

Figure 1
Figure 1
RR interval time series during resting controlled conditions before and after autonomic blockade (atropine 0.04 mg/kg and propranolol 0.2 mg/kg).
Figure 2
Figure 2
Spectral analysis of short-term heart rate, arterial pressure and respiration variability. Signal recordings are presented in the left part of the figure. In the central panels, the time series of RR interval, systolic arterial pressure and respiratory movements are displayed. In the right panels the power spectrum of heart rate, systolic arterial pressure and respiration are presented. Two distinct components at low (LF: ∼0.01 Hz) and high (HF: ∼0.25 Hz) frequency are detectable (shadowed areas) in the autospectra of heart rate and systolic arterial pressure variability. A single HF component characterizes respiration. EKG, electrocardiogram; AP, arterial pressure; RES, respiratory movements.
Figure 3
Figure 3
Spectral analysis of ln transformed 24 h heart rate variability. Almost 90% of the power is distributed within the ultra low (ULF) and very low (VLF) frequency ranges. The slope of the relationship between ln power and frequency between 10−2 and 10−4 Hz is indicated and provides the value of 1/f slope.
Figure 4
Figure 4
Schematic representation of the RR interval changes induced by a premature ventricular contraction that are used to compute the two indexes of heart rate turbulence: turbulence onset (TO) and turbulence slope (TS).

References

    1. Akselrod S., Gordon D., Ubel F. A., Shannon D. C., Barger A. C., Cohen R. J. (1981). Power spectrum analysis of heart rate fluctuation: a quantitative probe of beat-to-beat cardiovascular control. Science 213, 220–22210.1126/science.6166045
    1. Bauer A., Barthel P., Müller A., Ulm K., Huikuri H., Malik M., Schmidt G. (2009). Risk prediction by heart rate turbulence and deceleration capacity in postinfarction patients with preserved left ventricular function retrospective analysis of 4 independent trials. J. Electrocardiol. 42, 597–60110.1016/j.jelectrocard.2009.07.013
    1. Bauer A., Malik M., Schmidt G., Barthel P., Bonnemeier H., Cygankiewicz I., Guzik P., Lombardi F., Müller A., Oto A., Schneider R., Watanabe M., Wichterle D., Zareba W. (2008). Heart rate turbulence: standards of measurement, physiological interpretation, and clinical use international society for Holter and noninvasive electrophysiology consensus. J. Am. Coll. Cardiol. 52, 1353–136510.1016/j.jacc.2008.07.041
    1. Bigger J. T., Fleiss J., Steinman R. C., Rolnitzky L. M., Kleiger R. E., Rottman J. N. (1992). Frequency domain measures of heart period variability and mortality after myocardial infarction. Circulation 85, 164–171
    1. Burger A. J., Charlamb M., Weinrauch L. A., D’Elia J. A. (1997). Short-, and long-term reproducibility of heart rate variability in patients with long-standing type I diabetes mellitus. Am. J. Cardiol. 80, 1198–120210.1016/S0002-9149(97)00639-5
    1. Davies L. C., Francis D. P., Ponikowski P., Piepoli M. F., Coats A. J. (2001). Relation of heart rate and blood pressure turbulence following premature ventricular complexes to baroreflex sensitivity in chronic congestive heart failure. Am. J. Cardiol. 87, 737–74210.1016/S0002-9149(00)01493-4
    1. Fauchier L., Babutj D., Cosnay P., Autret M. L., Fauchier J. P. (1997). Heart rate variability in idiopathic dilated cardiomyopathy characteristics and prognostic value. J. Am. Coll. Cardiol. 30, 1009–101410.1016/S0735-1097(97)00265-9
    1. Goldberger A. L. (1996). Non-linear dynamics for clinicians: chaos theory, fractals, and complexity at the bedside. Lancet 347, 1312–131410.1016/S0140-6736(96)90948-4
    1. Grassi G., Turri C., Vailati S., Dell’Oro R., Mancia G. (1999). Muscle and skin sympathetic nerve traffic during the “white-coat” effect. Circulation 100, 222–225
    1. Huikuri H. V., Makikallio T. H., Peng C. K., Golberger A. L., Hintze U., Moller M., for the Diamond Study Group (2000). Fractal correlation properties of R-R interval dynamics and mortality in patients with depressed left ventricular function after an acute myocardial infarction. Circulation 101, 47–53
    1. Kleiger R. E., Miller J. P., Bigger J. T., Moss A. R., Multicenter Post-Infarction Research Group (1987). Decreased heart rate variability and its association with increased mortality after acute myocardial infarction. Am. J. Cardiol. 59, 256–26210.1016/0002-9149(87)90795-8
    1. Lombardi F. (2000). Chaos theory, heart rate variability and arrhythmic mortality. Circulation 101, 8–10
    1. Lombardi F. (2004). Sympathetic activation and subclinical inflammation: a new combination to identify high risk subjects. Eur. Heart J. 25, 359–36010.1016/j.ehj.2004.01.001
    1. Lombardi F., Gnecchi Ruscone T., Malliani A. (1989). Premature ventricular contractions and reflex sympathetic activation in cats. Cardiovasc. Res. 23, 205–21210.1093/cvr/23.3.205
    1. Lombardi F., Makikallio T. H., Myerburg R. J., Huikuri H. V. (2001). Sudden cardiac death: role of heart rate variability to identify patients at risk. Cardiovasc. Res. 50, 210–21710.1016/S0008-6363(01)00221-8
    1. Lombardi F., Porta A., Marzegalli M., Favale S., Santini M., Vincenti A., De Rosa A. (2000). Heart rate variability patterns before ventricular tachycardia onset in patients with implantable cardioverter defibrillator. Am. J. Cardiol. 86, 959–96310.1016/S0002-9149(00)01130-9
    1. Lombardi F., Sandrone G., Pernpruner S., Sala R., Garimoldi M., Cerutti S., Baselli G., Pagani M., Malliani A. (1987). Heart rate variability as an index of sympathovagal interaction after acute myocardial infarction. Am. J. Cardiol. 60, 1239–124510.1016/0002-9149(87)90601-1
    1. Lown B., Verrier R. L. (1976). Neural activity and ventricular fibrillation. N. Engl. J. Med. 294, 1165–117610.1056/NEJM197603182941201
    1. Mäkikallio T. H., Barthel P., Schneider R., Bauer A., Tapanainen J. M., Tulppo M. P., Schmidt G., Huikuri H. V. (2005). Prediction of sudden cardiac death after acute myocardial infarction: role of Holter monitoring in the modern treatment era. Eur. Heart J. 26, 762–76910.1093/eurheartj/ehi188
    1. Mäkikallio T. H., Koistinen J., Jordaens L., Tulppo M. P., Wood N., Glosarsky B., Peng C. K., Goldberger A. L., Huikuri H. V. (1999). Heart rate dynamics before spontaneous onset of ventricular fibrillation in patients with healed myocardial infarcts. Am. J. Cardiol. 83, 880–88410.1016/S0002-9149(98)01076-5
    1. Malik M., Camm A. J. (1995). Heart Rate Variability. Armonk, NY: Futura Publishing Company
    1. Malliani A., Pagani M., Lombardi F., Cerutti S. (1991). Cardiovascular neural regulation explored in the frequency domain. Circulation 84, 482–492
    1. Nolan J., Batin P. D., Andrews R. (1999). Prospective study of heart rate variability and mortality in chronic heart failure: results of the United Kingdom Heart Failure Evaluation and Assessment of Risk Trial (UK-Heart). Circulation 98, 1510–1516
    1. Pagani M., Lombardi F., Guzzetti S., Rimoldi O., Furlan R., Pizzinelli P., Sandrone G., Malfatto G., Dell’Orto S., Piccaluga E., Turiel M., Baselli G., Cerutti S., Malliani A. (1986). Power spectral analysys of heart rate and arterial pressure variabilities as a marker of sympathovagal interaction in man and consciuos dog. Circ. Res. 59, 178–193
    1. Parati G., Di Rienzo M., Bertinieri G. (1988). Evaluation of the baroreceptor heart rate reflex by 24 hours intra-arterial blood pressure monitoring in humans. Hypertension 12, 214–222
    1. Peng C. K., Havlin S., Stanley H. E., Goldberger A. L. (1995). Quantification of scaling exponents and crossover phenomena in nonstationary heartbeat time series. Chaos 5, 82–8710.1063/1.166141
    1. Rashba E. J., Estes N. A., Wang P., Schaechter A., Howard A., Zareba W., Couderc J. P., Perkiomaki J., Levine J., Kadish A. (2006). Preserved heart rate variability identifies low-risk patients with nonischemic dilated cardiomyopathy: results from the DEFINITE trial. Heart Rhythm 3, 281–28610.1016/j.hrthm.2005.11.028
    1. Roach D., Koshman M. L., Duff H., Sheldon R. (2002). Induction of heart rate and blood pressure turbulence in the electrophysiologic laboratory. Am. J. Cardiol. 90, 1098–110210.1016/S0002-9149(02)02775-3
    1. Savelieva I., Wichterle D., Harries M., Meara M., Camm A. J., Malik M. (2003). Heart rate turbulence after atrial, and ventricular premature beats: relation to left ventricular function, and coupling intervals. Pacing Clin. Electrophysiol. 26, 401–40510.1046/j.1460-9592.2003.00058.x
    1. Schmidt G., Malik M., Barthel P., Schneider R., Ulm K., Rolnitzky L., Camm A. J., Bigger J. T., Jr., Schomig A. (1999). Heart-rate turbulence after ventricular premature beats as a predictor of mortality after acute myocardial infarction. Lancet 353, 1390–139610.1016/S0140-6736(99)01046-6
    1. Schwab J. O., Eichner G., Veit G., Schmitt H., Lewalter T., Luderitz B. (2004). Influence of basic heart rate and sex on heart rate turbulence in healthy subjects. Pacing Clin. Electrophysiol. 27, 1625–163110.1111/j.1540-8159.2004.00695.x
    1. Stein P. K., Barzilay J. I. (2011). Relationship of abnormal heart rate turbulence and elevated CRP to cardiac mortality in low, intermediate, and high-risk older adults. J. Cardiovasc. Electrophysiol. 22, 122–127
    1. Stein P. K., Barzilay J. I., Chaves P. H., Mistretta S. Q., Domitrovich P. P., Gottdiener J. S., Rich M. W., Kleiger R. E. (2008). Novel measures of heart rate variability predict cardiovascular mortality in older adults independent of traditional cardiovascular risk factors: the Cardiovascular Health Study (CHS). J. Cardiovasc. Electrophysiol. 19, 1169–117410.1111/j.1540-8167.2008.01225.x
    1. Stein P. K., Domitrovich P. P., Huikuri H. V., Kleiger R. E., Cast Investigators (2005a). Traditional and nonlinear heart rate variability are each independently associated with mortality after myocardial infarction. J. Cardiovasc. Electrophysiol. 16, 13–2010.1111/j.1540-8167.2005.40788.x
    1. Stein P. K., Domitrovich P. P., Hui N., Rautaharju P., Gottdiener J. (2005b). Sometimes higher heart rate variability is not better heart rate variability: results of graphical and nonlinear analyses. J. Cardiovasc. Electrophysiol. 16, 954–95910.1046/j.1540-8167.2005.04358.x
    1. Task Force of the European Society of Cardiology and the North American Society of Pacing and Electrophysiology. (1996). Heart rate variability. Standards of measurement, physiological interpretation, and clinical use. Circulation 93, 1043–106510.1161/01.CIR.93.5.1043
    1. van de Borne P., Montano N., Pagani M., Oren R., Somers V. K. (1997). Absence of low-frequency variability of sympathetic nerve activity in severe heart failure. Circulation 95, 1449–1454
    1. Watanabe M. A., Marine J. E., Sheldon R., Josephson M. E. (2002). Effects of ventricular premature stimulus coupling interval on blood pressure and heart rate turbulence. Circulation 106, 325–33010.1161/01.CIR.0000022163.24831.B5
    1. Wichterle D., Melenovsky V., Simek J., Malik M. (2006). Hemodynamics and autonomic control of heart rate turbulence. J. Cardiovasc. Electrophysiol. 17, 286–29110.1111/j.1540-8167.2005.00330.x
    1. Wolf M. M., Varigos G. A., Hunt D., Sloman J. G. (1978). Sinus arrhythmia in acute myocardial infarction. Med. J. Aust. 2, 52–53
    1. Zaza A., Lombardi F. (2001). Autonomic indexes based on the analysis of heart rate variability: a view from the sinus node. Cardiovasc. Res. 50, 34–4210.1016/S0008-6363(01)00240-1

Source: PubMed

3
订阅