Sustained release glaucoma therapies: Novel modalities for overcoming key treatment barriers associated with topical medications

Aditya Belamkar, Alon Harris, Ryan Zukerman, Brent Siesky, Francesco Oddone, Alice Verticchio Vercellin, Thomas A Ciulla, Aditya Belamkar, Alon Harris, Ryan Zukerman, Brent Siesky, Francesco Oddone, Alice Verticchio Vercellin, Thomas A Ciulla

Abstract

Glaucoma is a progressive optic neuropathy and a leading cause of irreversible blindness. The disease has conventionally been characterized by an elevated intraocular pressure (IOP); however, recent research has built the consensus that glaucoma is not only dependent on IOP but rather represents a multifactorial optic neuropathy. Although many risk factors have been identified ranging from demographics to co-morbidities to ocular structural predispositions, IOP is currently the only modifiable risk factor, most often treated by topical IOP-lowering medications. However, topical hypotensive regimens are prone to non-adherence and are largely inefficient, leading to disease progression in spite of treatment. As a result, several companies are developing sustained release (SR) drug delivery systems as alternatives to topical delivery to potentially overcome these barriers. Currently, Bimatoprost SR (DurystaTM) from Allergan plc is the only FDA-approved SR therapy for POAG. Other SR therapies under investigation include: bimatoprost ocular ring (Allergan) (ClinicalTrials.gov identifier: NCT01915940), iDose® (Glaukos Corporation) (NCT03519386), ENV515 (Envisia Therapeutics) (NCT02371746), OTX-TP (Ocular Therapeutix) (NCT02914509), OTX-TIC (Ocular Therapeutix) (NCT04060144), and latanoprost free acid SR (PolyActiva) (NCT04060758). Additionally, a wide variety of technologies for SR therapeutics are under investigation including ocular surface drug delivery systems such as contact lenses and nanotechnology. While challenges remain for SR drug delivery technology in POAG management, this technology may shift treatment paradigms and dramatically improve outcomes.

Keywords: Glaucoma; adherence; glaucoma treatment; nanotechnology; sustained release; topical therapy.

Conflict of interest statement

Alon Harris would like to disclose that he received remuneration from AdOM, Qlaris, Luseed, and Cipla for serving as a consultant, and he serves on the board of Adom, Qlaris, and Phileas Pharma. Alon Harris holds an ownership interest in AdOM, Luseed, Oxymap, Qlaris, Phileas Pharma, and QuLent. All relationships listed above are pursuant to Icahn School of Medicine’s policy on outside activities. None of the other authors listed have any financial disclosures. Thomas Ciulla would like to disclose that he receives salary from Clearside Biomedical and he holds equity in Clearside Biomedical. The contribution of the author Francesco Oddone was supported by Fondazione Roma and by the Italian Ministry of Health. None of the other authors listed have any financial disclosures.

Figures

Graphical abstract
Graphical abstract

References

    1. Weinreb RN, Aung T, Medeiros FA.. The pathophysiology and treatment of glaucoma: a review. J Am Med Assoc. 2014;311(18):1901.
    1. Tham YC, Li X, Wong TY, et al. . Global prevalence of glaucoma and projections of glaucoma burden through 2040: a systematic review and meta-analysis. Ophthalmology. 2014;121(11):2081–2090.
    1. Siesky B, Harris A, Racette L, et al. . Differences in ocular blood flow in glaucoma between patients of African and European descent. J Glaucoma. 2015;24(2):117–121.
    1. Kass MA, Heuer DK, Higginbotham EJ, et al. . The Ocular Hypertension Treatment Study: a randomized trial determines that topical ocular hypotensive medication delays or prevents the onset of primary open-angle glaucoma. Arch Ophthalmol. 2002;120(6):701.
    1. Leske MC, Heijl A, Hussein M, et al. . Factors for glaucoma progression and the effect of treatment: the early manifest glaucoma trial. Arch Ophthalmol. 2003;121(1):48–56.
    1. Ramdas WD, Wolfs RCW, Hofman A, et al. . Ocular perfusion pressure and the incidence of glaucoma: real effect or Artifact?: The Rotterdam study. Investig Ophthalmol Vis Sci. 2011;52:6875–6881.
    1. Ekström C. Risk factors for incident open-angle glaucoma: a population-based 20-year follow-up study. Acta Ophthalmol. 2012;90(4):316–321.
    1. Le A, Mukesh BN, McCarty CA, et al. . Risk factors associated with the incidence of open-angle glaucoma: the visual impairment project. Investig Ophthalmol Vis Sci. 2003;44(9):3783–3789.
    1. Czudowska MA, Ramdas WD, Wolfs RCW, et al. . Incidence of glaucomatous visual field loss: a ten-year follow-up from the Rotterdam study. Ophthalmology. 2010;117(9):1705–1712.
    1. Kapetanakis VV, Chan MPY, Foster PJ, et al. . Global variations and time trends in the prevalence of primary open angle glaucoma (POAG): a systematic review and meta-analysis. Br J Ophthalmol. 2016;100(1):86–93.
    1. Patel P, Harris A, Toris C, et al. . Effects of sex hormones on ocular blood flow and intraocular pressure in primary open-angle glaucoma: a review. J Glaucoma. 2018;27(12):1037–1041.
    1. Musch DC, Gillespie BW, Niziol LM, et al. . Factors associated with intraocular pressure before and during 9 years of treatment in the collaborative initial glaucoma treatment study. Ophthalmology. 2008;115(6):927–933.
    1. Tobe LA, Harris A, Hussain RM, et al. . The role of retrobulbar and retinal circulation on optic nerve head and retinal nerve fibre layer structure in patients with open-angle glaucoma over an 18-month period. Br J Ophthalmol. 2015;99(5):609–612.
    1. Siaudvytyte L, Januleviciene I, Daveckaite A, et al. . Neuroretinal rim area and ocular haemodynamic parameters in patients with normal-tension glaucoma with differing intracranial pressures. Br J Ophthalmol. 2016;100(8):1134–1138.
    1. Price DA, Harris A, Siesky B, et al. . The influence of translaminar pressure gradient and intracranial pressure in glaucoma: a review. J Glaucoma. 2020;29(2):141–146.
    1. Ren R, Wang N, Zhang X, et al. . Trans-lamina cribrosa pressure difference correlated with neuroretinal rim area in glaucoma, Graefe’s Arch. Clin Exp Ophthalmol. 2011;249(7):1057–1063.
    1. Miki A, Ikuno Y, Asai T, et al. . Defects of the lamina cribrosa in high myopia and glaucoma. PLoS One. 2015;10(9):e0137909.
    1. Lee SH, Kwak SW, Kang EM, et al. . Estimated trans-lamina cribrosa pressure differences in low-teen and high-teen intraocular pressure normal tension glaucoma: The Korean national health and nutrition examination survey. PLoS One. 2016;11(2):e0148412.
    1. Kim YW, Jeoung JW, Kim DW, et al. . Clinical assessment of lamina cribrosa curvature in eyes with primary open-angle glaucoma. PLoS One. 2016;11(3):e0150260.
    1. Guy AH, Wiggs JL, Turalba A, et al. . Translating the low translaminar cribrosa pressure gradient hypothesis into the clinical care of glaucoma. Semin Ophthalmol. 2016;31(1–2):131–139.
    1. Geyer O, Levo Y.. Glaucoma is an autoimmune disease. Autoimmun Rev. 2020;19(6):102535.
    1. Shughoury A, Mathew S, Arciero J, et al. . Retinal oximetry in glaucoma: investigations and findings reviewed. Acta Ophthalmol. 2020;98(6):559–571.
    1. Chung H, Harris A, Ciulla T, et al. . Progress in measurement of ocular blood flow and relevance to our understanding of glaucoma and age-related macular degeneration. Prog Retin Eye Res. 1999;18(5):669–687.
    1. Siesky B, Harris A, Carr J, et al. . Reductions in retrobulbar and retinal capillary blood flow strongly correlate with changes in optic nerve head and retinal morphology over 4 years in open-angle glaucoma patients of African descent compared with patients of European descent. J Glaucoma. 2016;25(9):750–757.
    1. Huck A, Harris A, Siesky B, et al. . Vascular considerations in glaucoma patients of African and European descent. Acta Ophthalmol. 2014;92(5):e336–e340.
    1. Lee E, Harris A, Siesky B, et al. . The influence of retinal blood flow on open-angle glaucoma in patients with and without diabetes. Eur J Ophthalmol. 2013;24(4):542–549.
    1. Shoshani Y, Harris A, Shoja MM, et al. . Impaired ocular blood flow regulation in patients with open-angle glaucoma and diabetes. Clin Exp Ophthalmol. 2012;40(7):697–705.
    1. Gerber AL, Harris A, Siesky B, et al. . Vascular dysfunction in diabetes and glaucoma: a complex relationship reviewed. J Glaucoma. 2015;24(6):474–479.
    1. Tobe LA, Harris A, Trinidad J, et al. . Should men and women be managed differently in glaucoma? Ophthalmol Ther. 2012;1(1):1.
    1. McKinnon SJ, Goldberg LD, Peeples P, et al. . Current management of glaucoma and the need for complete therapy. Am J Manag Care. 2008;4(1 Suppl):S20–S27.
    1. Conlon R, Saheb H, Ahmed IIK.. Glaucoma treatment trends: a review. Can J Ophthalmol. 2017;52(1):114–124.
    1. Lee DA, Higginbotham EJ.. Glaucoma and its treatment: a review. Am J Health Syst Pharm. 2005;62(7):691–699.
    1. Tsai JC, Kanner EM.. Current and emerging medical therapies for glaucoma. Expert Opin Emerg Drugs. 2005;10(1):109–118.
    1. Camras CB, Cioffi GA, Van Buskirk EM, et al. . Comparison of latanoprost and timolol in patients with ocular hypertension and glaucoma: a six-month, masked, multicenter trial in the United States. Ophthalmology. 1996;103(1):138–147.
    1. Brandt JD, VanDenburgh AM, Chen K, et al. . Comparison of once- or twice-daily bimatoprost with twice-daily timolol in patients with elevated IOP: a 3-month clinical trial. Ophthalmology. 2001;108(6):1023–1031.
    1. Netland PA, Landry T, Sullivan EK, et al. . Travoprost compared with latanoprost and timolol in patients with open-angle glaucoma or ocular hypertension. Am J Ophthalmol. 2001;132(4):472–484. 10.1016/S0002-9394(01)01177-1.
    1. Sherwood M, Brandt J.. Six-month comparison of bimatoprost once-daily and twice-daily with timolol twice-daily in patients with elevated intraocular pressure. Surv Ophthalmol. 2001;45(Suppl 4):S361–S368.
    1. Watson P, Stjernschantz J, Beck L, et al. . A six-month, randomized, double-masked study comparing latanoprost with timolol in open-angle glaucoma and ocular hypertension. Ophthalmology. 1996;103(1):126–137.
    1. Hedman K, Alm A, Gross RL.. Pooled-data analysis of three randomized, double-masked, six-month studies comparing intraocular pressure-reducing effects of latanoprost and timolol in patients with ocular hypertension. J Glaucoma. 2003;12(6):463–465.
    1. Schwartz GF, Reardon G, Mozaffari E.. Persistency with latanoprost or timolol in primary open-angle glaucoma suspects. Am J Ophthalmol. 2004;137(Suppl):S3–S12.
    1. Nordstrom BL, Friedman DS, Mozaffari E, et al. . Persistence and adherence with topical glaucoma therapy. Am J Ophthalmol. 2005;140(4):598–606.
    1. Gugleta K, Orgül S, Flammer J.. Experience with cosopt, the fixed combination of timolol and dorzolamide, after switch from free combination of timolol and dorzolamide in Swiss ophthalmologists’ offices. Curr Med Res Opin. 2003;19(4):330–335.
    1. Olthoff CMG, Schouten JSAG, Van De Borne BW, et al. . Noncompliance with ocular hypotensive treatment in patients with glaucoma or ocular hypertension: an evidence-based review. Ophthalmology. 2005;112(6):953–961.e7.
    1. Friedman DS, Quigley HA, Gelb L, et al. . Using pharmacy claims data to study adherence to glaucoma medications: methodology and findings of the Glaucoma Adherence and Persistency Study (GAPS). Investig Ophthalmol Vis Sci. 2007;48(11):5052–5057.
    1. Newman-Casey PA, Robin AL, Blachley T, et al. . The most common barriers to glaucoma medication adherence: a cross-sectional survey. Ophthalmology. 2015;122(7):1308–1316.
    1. Mansouri K, Iliev ME, Rohrer K, et al. . Compliance and knowledge about glaucoma in patients at tertiary glaucoma units. Int Ophthalmol. 2011;31(5):369–376.
    1. Reardon G, Kotak S, Schwartz GF.. Objective assessment of compliance and persistence among patients treated for glaucoma and ocular hypertension: a systematic review. Patient Prefer Adherence. 2011;5:441–463.
    1. Okeke CO, Quigley HA, Jampel HD, et al. . Interventions improve poor adherence with once daily glaucoma medications in electronically monitored patients. Ophthalmology. 2009;116(12):2286–2293.
    1. Okeke CO, Quigley HA, Jampel HD, et al. . Adherence with topical glaucoma medication monitored electronically: the Travatan dosing aid study. Ophthalmology. 2009;116(2):191–199.
    1. Hermann MM, Papaconstantinou D, Muether PS, et al. . Adherence with brimonidine in patients with glaucoma aware and not aware of electronic monitoring. Acta Ophthalmol. 2011;89(4):e300–e305.
    1. Rossi GCM, Pasinetti GM, Scudeller L, et al. . Do adherence rates and glaucomatous visual field progression correlate? Eur J Ophthalmol. 2011;21(4):410–414.
    1. Sleath B, Blalock S, Covert D, et al. . The relationship between glaucoma medication adherence, eye drop technique, and visual field defect severity. Ophthalmology. 2011;118(12):2398–2402.
    1. Robin AL, Novack GD, Covert DW, et al. . Adherence in Glaucoma: objective measurements of once-daily and adjunctive medication use. Am J Ophthalmol. 2007;144(4):533–540.
    1. Tsai JC. A comprehensive perspective on patient adherence to topical glaucoma therapy. Ophthalmology. 2009;116(11 Suppl):S30–S36.
    1. Hermann MM, Bron AM, Creuzot-Garcher CP, et al. . Measurement of adherence to brimonidine therapy for glaucoma using electronic monitoring. J Glaucoma. 2011;20(8):502–508.
    1. Davies NM. Biopharmaceutical considerations in topical ocular drug delivery. Clin Exp Pharmacol Physiol. 2000;27(7):558–562.
    1. Mishima S, Gasset A, Klyce SD, et al. . Determination of tear volume and tear flow. Invest Ophthalmol. 1966;5(3):264–276.
    1. Chrai SS, Patton TF, Mehta A, et al. . Lacrimal and instilled fluid dynamics in rabbit eyes. J Pharm Sci. 1973;62(7):1112–1121.
    1. Lee V. Precorneal, corneal, and postcorneal factors. Drugs Pharm Sci. 1993;58:59–81.
    1. File RR, Patton TF.. Topically applied pilocarpine: human pupillary response as a function of drop size. Arch. Ophthalmol. 1980;98(1):112–115.
    1. Barar J, Javadzadeh AR, Omidi Y.. Ocular novel drug delivery: impacts of membranes and barriers. Expert Opin Drug Deliv. 2008;5(5):567–581.
    1. Ameeduzzafar A, Ali J, Fazil M, et al. . Colloidal drug delivery system: amplify the ocular delivery. Drug Deliv. 2016;23(3):710–726.
    1. Lee VH, Robinson JR.. Mechanistic and quantitative evaluation of precorneal pilocarpine disposition in albino rabbits. J Pharm Sci. 1979;68(6):673–684.
    1. Singh RB, Ichhpujani P, Thakur S, et al. . Promising therapeutic drug delivery systems for glaucoma: a comprehensive review. Ophthalmol Eye Dis. 2020;12:251584142090574.
    1. Wu T, Sheybani A.. Review of glaucoma drug delivery systems. Ophthalmol Manag. 2020;24:27–28.
    1. Shirley M. Bimatoprost implant: first approval. Drugs Aging. 2020;37(6):457–462.
    1. Craven ER, Walters T, Christie WC, et al. . Walters, 24-month phase I/II clinical trial of bimatoprost sustained-release implant (Bimatoprost SR) in glaucoma patients. Drugs. 2020;80(2):167–179.
    1. Lewis RA, Christie WC, Day DG, et al. . Bimatoprost sustained-release implants for glaucoma therapy: 6-month results from a phase I/II clinical trial. Am J Ophthalmol. 2017;175:137–147.
    1. Medeiros FA, Walters TR, Kolko M, et al. . Phase 3, randomized, 20-month study of bimatoprost implant in open-angle glaucoma and ocular hypertension (ARTEMIS 1). Ophthalmology. 2020;127(12):1627–1641.
    1. Lee SS, Burke J, Shen J, et al. . Bimatoprost sustained-release intracameral implant reduces episcleral venous pressure in dogs. Vet Ophthalmol. 2018;21(4):376–381.
    1. Lee SS, Dibas M, Almazan A, et al. . Dose-response of intracameral bimatoprost sustained-release implant and topical bimatoprost in lowering intraocular pressure. J Ocul Pharmacol Ther. 2019;35(3):138–144.
    1. Seal JR, Robinson MR, Burke J, et al. . Intracameral sustained-release bimatoprost implant delivers bimatoprost to target tissues with reduced drug exposure to off-target tissues. J Ocul Pharmacol Ther. 2019;35(1):50–57.
    1. Brandt JD, Sall K, DuBiner H, et al. . Six-month intraocular pressure reduction with a topical bimatoprost ocular insert: results of a phase II randomized controlled study. Ophthalmology. 2016;123(8):1685–1694.
    1. Brandt JD, DuBiner HB, Benza R, et al. . Long-term safety and efficacy of a sustained-release bimatoprost ocular ring. Ophthalmology. 2017;124(10):1565–1566.
    1. Chen MY, Sall KN, Tepedino M, et al. . Patient-reported outcomes of bimatoprost ocular ring in an open-label extension study in patients with open-angle glaucoma or ocular hypertension, Invest. Ophthalmol. Vis Sci. 2018;59:1231.
    1. Glaukos Corporation, Glaukos’ iDose® TR Demonstrates Sustained IOP Reduction and Favorable Safety Profile Over 24 Months in Phase 2b Study , Press Releases. 2021.
    1. Glaukos Corporation . Glaukos Corporation’s iDoseTM Travoprost achieves sustained IOP reduction and favorable safety profile in 12-Month Interim Cohort. Press Releases. 2018.
    1. NCT02371746, Safety and Efficacy of ENV515 Travoprost Extended Release (XR) in Patients With Bilateral Ocular Hypertension or Primary Open Angle Glaucoma , . 2015.
    1. Navratil T, Garcia A, Verhoeven RS, et al. . Advancing ENV515 (travoprost) intracameral implant into clinical development: nonclinical evaluation of ENV515 in support of first-time-in-human phase 2a clinical study. Invest Ophthalmol Vis Sci. 2015;56:5706.
    1. Navratil T, Garcia A, Tully J, et al. . Preclinical evaluation of ENV515 (travoprost) intracameral implant – clinical candidate for treatment of Glaucoma targeting six-month duration of action. Invest Ophthalmol Vis Sci. 2014;55:3548.
    1. Kompella UB, Hartman RR, Patil MA.. Extraocular, periocular, and intraocular routes for sustained drug delivery for glaucoma. Prog Retin Eye Res. 2021;82:100901.
    1. Perera SA, Ting DS, Nongpiur ME, et al. . Feasibility study of sustained-release travoprost punctum plug for intraocular pressure reduction in an Asian population. Clin Ophthalmol. 2016;10:757–764.
    1. Vantipalli S, Sall KN, Stein E, et al. . Evaluation of the safety and efficacy of OTX-TP, an intracanalicular travoprost insert, for the treatment of patients with open-angle glaucoma or ocular hypertension: a phase 3 study. Invest Ophthalmol Vis Sci. 2020;61:3488.
    1. Utkhede D, William R.. Improving retention rates for sustained therapeutic delivery through punctal plugs. Invest Ophthalmol Vis Sci. 2018;59:5675.
    1. Goldberg DF, Williams R, Phase A.. 2 study evaluating safety and efficacy of the Latanoprost Punctal Plug Delivery System (L-PPDS) in subjects with Ocular Hypertension (OH) or Open-Angle Glaucoma (OAG). Invest Ophthalmol Vis Sci. 2012;53:5095.
    1. Peng CC, Kim J, Chauhan A.. Extended delivery of hydrophilic drugs from silicone-hydrogel contact lenses containing vitamin E diffusion barriers. Biomaterials. 2010;31(14):4032–4047.
    1. Creech JL, Chauhan A, Radke CJ.. Dispersive mixing in the posterior tear film under a soft contact lens. Ind Eng Chem Res. 2001;40(14):3015–3026.
    1. Peng CC, Ben-Shlomo A, Mackay EO, et al. . Drug delivery by contact lens in spontaneously glaucomatous dogs. Curr Eye Res. 2012;37(3):204–211.
    1. Ciolino JB, Ross AE, Tulsan R, et al. . Latanoprost-eluting contact lenses in glaucomatous monkeys. Ophthalmology. 2016;123(10):2085–2092.
    1. Jung HJ, Abou-Jaoude M, Carbia BE, et al. . Glaucoma therapy by extended release of timolol from nanoparticle loaded silicone-hydrogel contact lenses. J Control Release. 2013;165(1):82–89.
    1. Yan F, Liu Y, Han S, et al. . Bimatoprost imprinted silicone contact lens to treat glaucoma. AAPS PharmSciTech. 2020;21(2):63.
    1. Mehta P, Al-Kinani AA, Arshad MS, et al. . Engineering and development of chitosan-based nanocoatings for ocular contact lenses. J Pharm Sci. 2019;108(4):1540–1551.
    1. Xu J, Ge Y, Bu R, et al. . Co-delivery of latanoprost and timolol from micelles-laden contact lenses for the treatment of glaucoma. J Control Release. 2019;305:18–28.
    1. Kim HJ, Zhang K, Moore L, et al. . Diamond nanogel-embedded contact lenses mediate lysozyme-dependent therapeutic release. ACS Nano. 2014;8(3):2998–3005.
    1. Mehta P, Al-Kinani AA, Arshad MS, et al. . Development and characterisation of electrospun timolol maleate-loaded polymeric contact lens coatings containing various permeation enhancers. Int J Pharm. 2017;532(1):408–420.,.
    1. Ding X, Ben-Shlomo G, Que L.. Soft contact lens with embedded microtubes for sustained and self-adaptive drug delivery for glaucoma treatment. ACS Appl Mater Interfaces. 2020;12(41):45789–45795.
    1. Jung HJ, Chauhan A.. Temperature sensitive contact lenses for triggered ophthalmic drug delivery. Biomaterials. 2012;33(7):2289–2300.
    1. Tighsazzadeh M, Mitchell JC, Boateng JS.. Development and evaluation of performance characteristics of timolol-loaded composite ocular films as potential delivery platforms for treatment of glaucoma. Int J Pharm. 2019;566:111–125.
    1. Gagandeep T, Garg B, Malik G, Rath , et al. . Development and characterization of nano-fiber patch for the treatment of glaucoma. Eur J Pharm Sci. 2014;53:10–16.
    1. Zarbin MA, Montemagno C, Leary JF, et al. . Nanotechnology in ophthalmology. Can J Ophthalmol. 2010;45(5):457–476.
    1. Desai SD, Blanchard J.. Evaluation of pluronic F127-based sustained-release ocular delivery systems for pilocarpine using the albino rabbit eye model. J Pharm Sci. 1998;87(10):1190–1195.
    1. Nanjwade BK, Deshmukh RV, Gaikwad KR, et al. . Formulation and evaluation of micro hydrogel of Moxifloxacin hydrochloride. Eur J Drug Metab Pharmacokinet. 2012;37(2):117–123.
    1. El Hoffy NM, Abdel Azim EA, Hathout RM, et al. . Glaucoma: management and future perspectives for nanotechnology-based treatment modalities. Eur J Pharm Sci. 2021;158:105648.
    1. Lynch C, Kondiah PPD, Choonara YE, et al. . Advances in biodegradable nano-sized polymer-based ocular drug delivery. Polymers. 2019;11(8):1371.
    1. Lei L, Li X, Xiong T, et al. . Covalently cross-linked chitosan hydrogel sheet for topical ophthalmic delivery of levofloxacin. J Biomed Nanotechnol. 2018;14(2):371–378.
    1. Nagarwal RC, Kant S, Singh PN, et al. . Polymeric nanoparticulate system: a potential approach for ocular drug delivery. J Control Release. 2009;136(1):2–13.
    1. Malavia N, Reddy L, Szinai I, et al. . Biodegradable sustained-release drug delivery systems fabricated using a dissolvable hydrogel template technology for the treatment of ocular indications. Invest Ophthalmol Vis Sci. 2015;56:1296.
    1. Ilka R, Mohseni M, Kianirad M, et al. . Nanogel-based natural polymers as smart carriers for the controlled delivery of Timolol Maleate through the cornea for glaucoma. Int J Biol Macromol. 2018;109:955–962.
    1. Cuggino JC, Tártara LI, Gugliotta LM, et al. . Mucoadhesive and responsive nanogels as carriers for sustainable delivery of timolol for glaucoma therapy. Mater Sci Eng C Mater Biol Appl. 2021;118:111383.
    1. Suzuki D, Horigome K, Kureha T, et al. . Polymeric hydrogel microspheres: design, synthesis, characterization, assembly and applications. Polym J. 2017;49(10):695–702.
    1. Bertram JP, Saluja SS, McKain J, et al. . Sustained delivery of timolol maleate from poly(lactic-co-glycolic acid)/poly(lactic acid) microspheres for over 3 months. J Microencapsul. 2009;26(1):18–26.
    1. Fedorchak MV, Conner IP, Schuman JS, et al. . Long term glaucoma drug delivery using a topically retained gel/microsphere eye drop. Sci Rep. 2017;7(1):8639.
    1. Chiang B, Kim YC, Doty AC, et al. . Sustained reduction of intraocular pressure by supraciliary delivery of brimonidine-loaded poly(lactic acid) microspheres for the treatment of glaucoma. J Control Release. 2016;228:48–57.
    1. Arranz-Romera A, Hernandez M, Checa-Casalengua P, et al. . A safe GDNF and GDNF/BDNF controlled delivery system improves migration in human retinal pigment epithelial cells and survival in retinal ganglion cells: potential usefulness in degenerative retinal pathologies. Pharm. 2021;14(1):50.
    1. Mietzner R, Kade C, Froemel F, et al. . Fasudil loaded PLGA microspheres as potential intravitreal depot formulation for glaucoma therapy. Pharmaceutics. 2020;12(8):706.
    1. Nguyen DD, Luo LJ, Lai JY.. Effects of shell thickness of hollow poly(lactic acid) nanoparticles on sustained drug delivery for pharmacological treatment of glaucoma. Acta Biomater. 2020;111:302–315.
    1. Lancina MG, Singh S, Kompella UB, et al. . Fast dissolving dendrimer nanofiber mats as alternative to eye drops for more efficient antiglaucoma drug delivery. ACS Biomater Sci Eng. 2017;3(8):1861–1868.
    1. Pang X, Li J, Pi J, et al. . Increasing efficacy and reducing systemic absorption of brimonidine tartrate ophthalmic gels in rabbits. Pharm Dev Technol. 2018;23(3):231–239.
    1. Sun J, Lei Y, Dai Z, et al. . Sustained release of brimonidine from a new composite drug delivery system for treatment of glaucoma. ACS Appl Mater Interfaces. 2017;9(9):7990–7999.
    1. Cheng YH, Ko YC, Chang YF, et al. . Thermosensitive chitosan-gelatin-based hydrogel containing curcumin-loaded nanoparticles and latanoprost as a dual-drug delivery system for glaucoma treatment. Exp Eye Res. 2019;179:179–187.
    1. Luo L-J, Nguyen DD, Lai J-Y.. Benzoic acid derivative-modified chitosan-g-poly(N-isopropylacrylamide): methoxylation effects and pharmacological treatments of Glaucoma-related neurodegeneration. J Control Release. 2020;317:246–258.
    1. Lawrence MJ, Rees GD.. Microemulsion-based media as novel drug delivery systems. Adv Drug Deliv Rev. 2000;45(1):89–121.
    1. Gan L, Gan Y, Zhu C, et al. . Novel microemulsion in situ electrolyte-triggered gelling system for ophthalmic delivery of lipophilic cyclosporine A: in vitro and in vivo results. Int J Pharm. 2009;365(1–2):143–149.
    1. Salama HA, Ghorab M, Mahmoud AA, et al. . PLGA nanoparticles as subconjunctival injection for management of glaucoma. AAPS PharmSciTech. 2017;18(7):2517–2528.
    1. Mittal N, Kaur G.. Investigations on polymeric nanoparticles for ocular delivery. Adv Polym Technol. 2019;2019:1–14.
    1. Tsai CH, Wang PY, Lin IC, et al. . Ocular drug delivery: role of degradable polymeric nanocarriers for ophthalmic application. Int J Mol Sci. 2018;19(9):2830.
    1. Shokry M, Hathout RM, Mansour S.. Exploring gelatin nanoparticles as novel nanocarriers for Timolol Maleate: augmented in-vivo efficacy and safe histological profile. Int J Pharm. 2018;545(1–2):229–239.
    1. Esteban-Pérez S, Andrés-Guerrero V, López-Cano JJ, et al. . Gelatin nanoparticles-HPMC hybrid system for effective ocular topical administration of antihypertensive agents. Pharmaceutics. 2020;12(4):306.
    1. Barwal I, Kumar R, Dada T, et al. . Effect of ultra-small chitosan nanoparticles doped with brimonidine on the ultra-structure of the trabecular meshwork of glaucoma patients. Microsc Microanal. 2019;25(6):1352–1366.
    1. López ES, Machado ALL, Vidal LB, et al. . Lipid nanoparticles as carriers for the treatment of neurodegeneration associated with Alzheimer’s Disease and Glaucoma: present and future challenges. Curr Pharm Des. 2020;26(12):1235–1250.
    1. Wang F, Chen L, Zhang D, et al. . Methazolamide-loaded solid lipid nanoparticles modified with low-molecular weight chitosan for the treatment of glaucoma: vitro and vivo study. J Drug Target. 2014;22(9):849–858.
    1. Zhou Y, Fang A, Wang F, et al. . Core-shell lipid-polymer nanoparticles as a promising ocular drug delivery system to treat glaucoma. Chinese Chem Lett. 2020;31(2):494–500.
    1. Schnichels SA-O, Hurst J, de Vries JW, et al. . Interfaces, Improved treatment options for glaucoma with brimonidine-loaded lipid DNA nanoparticles. ACS Appl Mater Interfaces. 2021;13(8):9445–9456.
    1. Natarajan JV, Ang A, Darwitan A, et al. . Nanomedicine for glaucoma: liposomes provide sustained release of latanoprost in the eye. Int J Nanonmedicine. 2012;7:123–131.
    1. Wong TT, Novack GD, Natarajan JV, et al. . Nanomedicine for glaucoma: sustained release latanoprost offers a new therapeutic option with substantial benefits over eyedrops. Drug Deliv Transl Res. 2014;4(4):303–309.
    1. Li H, Liu Y, Zhang Y, et al. . Liposomes as a Novel Ocular Delivery System for brinzolamide: in vitro and in vivo studies. AAPS PharmSciTech. 2016;17(3):710–717.
    1. B.Y.C.F , Venkatraman S, Natarajan JV.. Sustained timolol maleate delivery from liposomes for glaucoma therapy and ocular hypertension. Google Patents. 2017;2017:1–22.
    1. Hathout RM, Gad HA, Abdel-Hafez SM, et al. . Gelatinized core liposomes: a new Trojan horse for the development of a novel timolol maleate glaucoma medication. Int J Pharm. 2019;556:192–199.
    1. Virno MM. Ophthalmic formulation comprising citicoline carried by liposome for the treatment of glaucoma. Google Patents. 2020.
    1. Eldeeb AE, Salah S, Ghorab M.. Formulation and evaluation of cubosomes drug delivery system for treatment of glaucoma: ex-vivo permeation and in-vivo pharmacodynamic study. J Drug Deliv Sci Technol. 2019;52:236–247.
    1. Bessone CDV, Akhlaghi SP, Tártara LI, et al. . Latanoprost-loaded phytantriol cubosomes for the treatment of glaucoma. Eur J Pharm Sci. 2021;160:105748.
    1. Hassan DH, Abdelmonem R, Abdellatif MM.. Formulation and characterization of carvedilol leciplex for glaucoma treatment: in-vitro, ex-vivo and in-vivo study. Pharmaceutics. 2018;10(4):197.
    1. Ramadan A, Eladawy S, El-Enin A, et al. . Development and investigation of timolol maleate niosomal formulations for the treatment of glaucoma. J Pharm Investig. 2020;50(1):12–59.
    1. Fathalla D, Fouad EA, Soliman GM.. Latanoprost niosomes as a sustained release ocular delivery system for the management of glaucoma. Drug Dev Ind Pharm. 2020;46(5):806–813.
    1. Schnichels S, Hurst J, de Vries JW, et al. . Self-assembled DNA nanoparticles loaded with travoprost for glaucoma-treatment. Nanomedicine. 2020;29:102260.
    1. Willem de Vries J, Schnichels S, Hurst J, et al. . DNA nanoparticles for ophthalmic drug delivery. Biomaterials. 2018;157:98–106.
    1. Masse F, Desjardins P, Ouellette M, et al. . Synthesis of ultrastable gold nanoparticles as a new drug delivery system. Molecules. 2019;24(16):2929.
    1. Maulvi FA, Patil RJ, Desai AR, et al. . Effect of gold nanoparticles on timolol uptake and its release kinetics from contact lenses: in vitro and in vivo evaluation. Acta Biomater. 2019;86:350–362.
    1. Zhao Y, Wang Y, Ran F, et al. . A comparison between sphere and rod nanoparticles regarding their in vivo biological behavior and pharmacokinetics. Sci Rep. 2017;7(1):4131.
    1. Han X, Zhao Y, Liu H, et al. . Micro-interaction of mucin tear film interface with particles: the inconsistency of pharmacodynamics and precorneal retention of ion-exchange, functionalized, Mt-embedded nano- and microparticles. Colloids Surf B Biointerfaces. 2021;197:111355.
    1. Harris A, Guidoboni G, Siesky B, et al. . Ocular blood flow as a clinical observation: value, limitations and data analysis. Prog Retin Eye Res. 2020;78:100841.
    1. Kim SH, Lee EJ, Han JC, et al. . The effect of diurnal fluctuation in intraocular pressure on the evaluation of risk factors of progression in normal tension glaucoma. PLoS One. 2016;11(10):e0164876.
    1. Asrani S, Zeimer R, Wilensky J, et al. . Large diurnal fluctuations in intraocular pressure are an independent risk factor in patients with glaucoma. J Glaucoma. 2000;9(2):134–142.

Source: PubMed

3
订阅