Kinocardiography Derived from Ballistocardiography and Seismocardiography Shows High Repeatability in Healthy Subjects

Amin Hossein, Jérémy Rabineau, Damien Gorlier, Jose Ignacio Juarez Del Rio, Philippe van de Borne, Pierre-François Migeotte, Antoine Nonclercq, Amin Hossein, Jérémy Rabineau, Damien Gorlier, Jose Ignacio Juarez Del Rio, Philippe van de Borne, Pierre-François Migeotte, Antoine Nonclercq

Abstract

Recent years have witnessed an upsurge in the usage of ballistocardiography (BCG) and seismocardiography (SCG) to record myocardial function both in normal and pathological populations. Kinocardiography (KCG) combines these techniques by measuring 12 degrees-of-freedom of body motion produced by myocardial contraction and blood flow through the cardiac chambers and major vessels. The integral of kinetic energy (iK) obtained from the linear and rotational SCG/BCG signals, and automatically computed over the cardiac cycle, is used as a marker of cardiac mechanical function. The present work systematically evaluated the test-retest (TRT) reliability of KCG iK derived from BCG/SCG signals in the short term (<15 min) and long term (3-6 h) on 60 healthy volunteers. Additionally, we investigated the difference of repeatability with different body positions. First, we found high short-term TRT reliability for KCG metrics derived from SCG and BCG recordings. Exceptions to this finding were limited to metrics computed in left lateral decubitus position where the TRT reliability was moderate-to-high. Second, we found low-to-moderate long-term TRT reliability for KCG metrics as expected and confirmed by blood pressure measurements. In summary, KCG parameters derived from BCG/SCG signals show high repeatability and should be further investigated to confirm their use for cardiac condition longitudinal monitoring.

Keywords: ballistocardiography; cardiac contractility; cardiac kinetic energy; cardiac monitoring; kinocardiography; reliability; repeatability; seismocardiography; test–retest.

Conflict of interest statement

A.H., P.-F.M. and D.G. are HeartKinetics minority shareholders. The other authors declare no competing interests.

Figures

Figure 1
Figure 1
Study protocol. Data were acquired in 2 configurations—left lateral decubitus (LD) and supine (Sup)—and at 3 points in time—Point A, Point B after 10 to 15 min and Point C after 3 to 6 h resulting in a total of 6 data recordings.
Figure 2
Figure 2
Waveforms of (from top to bottom) electrocardiogram (ECG), seismocardiography (SCG) linear kinetic energy, SCG rotational kinetic energy, ballistocardiography (BCG) linear kinetic energy and BCG rotational kinetic energy for a representative subject at baseline.
Figure 3
Figure 3
This scatter plot depicts the modal ICCc values appearing in both intersession (x-axis) and intrasession (y-axis) for each KCG iK parameter and HR. Two thin black lines are drawn to display the critical value (ICCc = 0.5) for both intra- and intersession test–retest reliability, and the blue dash line characterizes the positions with equal intra- and intersession reliability.
Figure 4
Figure 4
KCG metrics measured in two positions: LD and supine at collection point A. (a) SCGiKLin>; (b) SCGiKRot; (c) BCGiKLin; (d) BCGiKRot.*: p < 0.0001.

References

    1. Hunt S.A., Baker D.W., Chin M.H., Cinquegrani M.P., Feldman A.M., Francis G.S., Ganiats T.G., Goldstein S., Gregoratos G., Jessup M.L., et al. ACC/AHA Guidelines for the Evaluation and Management of Chronic Heart Failure in the Adult: Executive Summary A Report of the American College of Cardiology/American Heart Association Task Force on Practice Guidelines (Committee to Revise the 1995 Guidelines for the Evaluation and Management of Heart Failure): Developed in Collaboration With the International Society for Heart and Lung Transplantation; Endorsed by the Heart Failure Society of America. Circulation. 2001;104:2996–3007.
    1. Zheng Y.-Y., Ma Y.-T., Zhang J., Xie X. COVID-19 and the cardiovascular system. Nat. Rev. Cardiol. 2020;17:259–260. doi: 10.1038/s41569-020-0360-5.
    1. Clerkin K.J., Fried J.A., Raikhelkar J., Sayer G., Griffin J.M., Masoumi A., Jain S.S., Burkhoff D., Kumaraiah D., Rabbani L., et al. COVID-19 and Cardiovascular Disease. Circulation. 2020;141:1648–1655. doi: 10.1161/circulationaha.120.046941.
    1. Mafham M.M., Spata E., Goldacre R., Gair D., Curnow P., Bray M., Hollings S., Roebuck C., Gale C.P., Mamas M.A., et al. COVID-19 pandemic and admission rates for and management of acute coronary syndromes in England. Lancet. 2020;396:381–389. doi: 10.1016/s0140-6736(20)31356-8.
    1. Pinheiro E., Postolache O., Girão P. Theory and Developments in an Unobtrusive Cardiovascular System Representation: Ballistocardiography. Open Biomed. Eng. J. 2010;4:201–216. doi: 10.2174/1874120701004010201.
    1. Giovangrandi L., Inan O.T., Wiard R.M., Etemadi M., Kovacs G.T. Ballistocardiography A method worth revisiting; Proceedings of the 2011 Annual International Conference of the IEEE Engineering in Medicine and Biology Society; Boston, MA, USA. 30 August–3 September 2011; pp. 4279–4282.
    1. Starr I. The relation of the ballistocardiogram to cardiac function. Am. J. Cardiol. 1958;2:737–747. doi: 10.1016/0002-9149(58)90271-6.
    1. Salernod M., Zanetti J. Seismocardiography: A new technique for recording cardiac vibrations. Concept, method, and initial observations. J. Cardiovasc. Technol. 1990;9:111–118.
    1. Jaakkola J., Jaakkola S., Lahdenoja O., Hurnanen T., Koivisto T., Pänkäälä M., Knuutila T., Kiviniemi T.O., Vasankari T., Airaksinen J. Mobile Phone Detection of Atrial Fibrillation with Mechanocardiography. Circulation. 2018;137:1524–1527. doi: 10.1161/circulationaha.117.032804.
    1. Aydemir V.B., Fan J., Dowling S., Inan O.T., Rehg J.M., Klein L. Ballistocardiography for Ambulatory Detection and Prediction of Heart Failure Decompensation. J. Card. Fail. 2018;24:S116. doi: 10.1016/j.cardfail.2018.07.425.
    1. Shandhi M.H., Fan J., Heller A.J., Etemadi M., Inan O.T., Klein L. Seismocardiography Can Assess Cardiopulmonary Exercise Test Parameters in Patients with Heart Failure. J. Card. Fail. 2018;24:S124–S125. doi: 10.1016/j.cardfail.2018.07.446.
    1. Hossein A., Mirica D.C., Rabineau J., Del Rio J.I., Morra S., Gorlier D., Nonclercq A., Van De Borne P., Migeotte P.-F. Accurate Detection of Dobutamine-induced Haemodynamic Changes by Kino-Cardiography: A Randomised Double-Blind Placebo-Controlled Validation Study. Sci. Rep. 2019;9:1–11. doi: 10.1038/s41598-019-46823-3.
    1. Hossein A., Rabineau J., Gorlier D., Pinki F., Van De Borne P., Nonclercq A., Migeotte P.-F. Effects of acquisition device, sampling rate, and record length on kinocardiography during position-induced haemodynamic changes. Biomed. Eng. Online. 2021;20:1–18. doi: 10.1186/s12938-020-00837-5.
    1. Morra S., Hossein A., Gorlier D., Rabineau J., Chaumont M., Migeotte P.-F., Van De Borne P. Modification of the mechanical cardiac performance during end-expiratory voluntary apnea recorded with ballistocardiography and seismocardiography. Physiol. Meas. 2019;40:105005. doi: 10.1088/1361-6579/ab4a6a.
    1. Morra S., Hossein A., Gorlier D., Rabineau J., Chaumont M., Migeotte P.-F., Van De Borne P. Ballistocardiography and seismocardiography detection of hemodynamic changes during simulated obstructive apnea. Physiol. Meas. 2020;41:065007. doi: 10.1088/1361-6579/ab924b.
    1. Morra S., Gauthey A., Hossein A., Rabineau J., Racape J., Gorlier D., Migeotte P.-F., Waroux J.B.L.P.D., Van De Borne P. Influence of sympathetic activation on myocardial contractility measured with ballistocardiography and seismocardiography during sustained end-expiratory apnea. Am. J. Physiol. Integr. Comp. Physiol. 2020;319:R497–R506. doi: 10.1152/ajpregu.00142.2020.
    1. Rabineau J., Hossein A., Landreani F., Haut B., Mulder E., Luchitskaya E., Tank J., Caiani E.G., van de Borne P., Migeotte P.F. Cardiovascular adaptation and countermeasure efficacy assessed by ballistocardiography and seismocardiography during 60 days of simulated microgravity in head-down bed rest. Sci. Rep. 2020;10:1–13.
    1. Holloszy J.O., Skinner J.S., Barry A.J., Cureton T.K. Effect of physical conditioning on cardiovascular function. Am. J. Cardiol. 1964;14:761–770. doi: 10.1016/0002-9149(64)90005-0.
    1. Jackson D.H., Lane N.E., Wherry c R.J., Jr. A Study of the Ballistocardiographic Test-Retest Reliability. U.S. Naval Aerospace Medical Institute; Pensacola, MI, USA: Naval Aviation Medical Center; Pensacola, MI, USA: 1969.
    1. Alametsä J., Palomäki A., Viik J. Short and longer term repeatability of ballistocardiography in a sitting position with EMFi sensor. Med Biol. Eng. Comput. 2011;49:881–889. doi: 10.1007/s11517-011-0746-y.
    1. Zakeri V., Tavakolian K., Blaber A.P., Bauer E.P., Dehkordi P., Khosrow-Khavar F. The repeatability of estimated systolic time intervals in healthy subjects using seismocardiogram and electrocardiogram. Physiol. Meas. 2020;41:02NT01. doi: 10.1088/1361-6579/ab6f53.
    1. De Lalla V., Brown H.R. Respiratory variation of the ballistocardiogram. Am. J. Med. 1950;9:728–733. doi: 10.1016/0002-9343(50)90287-7.
    1. Martin-Yebra A., Landreani F., Casellato C., Pavan E.E., Migeotte P.-F., Frigo C.A., Martínez J.P., Caiani E.G. Evaluation of respiratory- and postural-induced changes on the ballistocardiogram signal by time warping averaging. Physiol. Meas. 2017;38:1426–1440. doi: 10.1088/1361-6579/aa72b0.
    1. Inan O.T., Migeotte P.-F., Park K.-S., Etemadi M., Tavakolian K., Casanella R., Zanetti J.M., Tank J., Funtova I., Prisk G.K., et al. Ballistocardiography and Seismocardiography: A Review of Recent Advances. IEEE J. Biomed. Health Inform. 2014;19:1414–1427. doi: 10.1109/jbhi.2014.2361732.
    1. Shrout P.E., Fleiss J.L. Intraclass Correlations: Uses in Assessing Rater Reliability. Psychol. Bull. 1979;86:420.
    1. McGraw K.O., Wong S.P. Forming inferences about some intraclass correlation coefficients. Psychol. Methods. 1996;1:30–46. doi: 10.1037/1082-989x.1.1.30.
    1. Abdi H., Salkind N. Coefficient of Variation. Encycl. Res. Des. 2012;1:169–171. doi: 10.4135/9781412961288.n56.
    1. Inan O.T., Etemadi M., Wiard R.M., Giovangrandi L., Kovacs G.T.A. Robust ballistocardiogram acquisition for home monitoring. Physiol. Meas. 2009;30:169–185. doi: 10.1088/0967-3334/30/2/005.
    1. Rowland T.W., Melanson E.L., Popowski B.E., Ferrone L.C. Test–Retest Reproducibility of Maximum Cardiac Output by Doppler Echocardiography. Am. J. Cardiol. 1998;81:1228–1230. doi: 10.1016/s0002-9149(98)00099-x.
    1. Soames R.W., Atha J. Three-dimensional ballistocardiographic responses to changes of posture. Clin. Phys. Physiol. Meas. 1982;3:169–177. doi: 10.1088/0143-0815/3/3/001.
    1. Di Rienzo M., Vaini E., Castiglioni P., Merati G., Meriggi P., Parati G., Faini A., Rizzo F. Wearable seismocardiography: Towards a beat-by-beat assessment of cardiac mechanics in ambulant subjects. Auton. Neurosci. 2013;178:50–59. doi: 10.1016/j.autneu.2013.04.005.
    1. Taebi A., Solar B.E., Bomar A.J., Sandler R.H., Mansy H.A. Recent Advances in Seismocardiography. Vibration. 2019;2:64–86. doi: 10.3390/vibration2010005.
    1. Nakao S., Come P.C., Miller M.J., Momomura S., Sahagian P., Ransil B.J., Grossman W. Effects of supine and lateral positions on cardiac output and intracardiac pressures: An experimental study. Circulation. 1986;73:579–585. doi: 10.1161/01.cir.73.3.579.
    1. Profant J., Dimsdale J.E. Race and Diurnal Blood Pressure Patterns. Hypertension. 1999;33:1099–1104. doi: 10.1161/01.hyp.33.5.1099.
    1. Fagard R.H. Dipping Pattern of Nocturnal Blood Pressure in Patients with Hypertension. [(accessed on 13 November 2020)];Medscape. Available online: .
    1. Starr I., Friedland C.K. On the Cause of The Respiratory Variation of The Ballistocardiogram, with a Note on Sinus Arrhythmia. J. Clin. Investig. 1946;25:53–64. doi: 10.1172/jci101689.
    1. Jain P.K., Tiwari A.K. A novel method for suppression of motion artifacts from the seismocardiogram signal; Proceedings of the 2016 IEEE International Conference on Digital Signal Processing (DSP); Beijing, China. 16–18 October 2016; pp. 6–10.
    1. Yu S., Liu S. A Novel Adaptive Recursive Least Squares Filter to Remove the Motion Artifact in Seismocardiography. Sensors. 2020;20:1596. doi: 10.3390/s20061596.
    1. Yang C., Tavassolian N. Motion Artifact Cancellation of Seismocardiographic Recording from Moving Subjects. IEEE Sens. J. 2016;16:5702–5708. doi: 10.1109/jsen.2016.2573269.

Source: PubMed

3
订阅