African isolates show a high proportion of multiple copies of the Plasmodium falciparum plasmepsin-2 gene, a piperaquine resistance marker

Didier Leroy, Fiona Macintyre, Yeka Adoke, Serge Ouoba, Aissata Barry, Ghyslain Mombo-Ngoma, Jacques Mari Ndong Ngomo, Rosauro Varo, Yannelle Dossou, Antoinette Kitoto Tshefu, Tran Thanh Duong, Bui Quang Phuc, Bart Laurijssens, Roland Klopper, Nimol Khim, Eric Legrand, Didier Ménard, Didier Leroy, Fiona Macintyre, Yeka Adoke, Serge Ouoba, Aissata Barry, Ghyslain Mombo-Ngoma, Jacques Mari Ndong Ngomo, Rosauro Varo, Yannelle Dossou, Antoinette Kitoto Tshefu, Tran Thanh Duong, Bui Quang Phuc, Bart Laurijssens, Roland Klopper, Nimol Khim, Eric Legrand, Didier Ménard

Abstract

Background: Today, the development of new and well-tolerated anti-malarial drugs is strongly justified by the emergence of Plasmodium falciparum resistance. In 2014-2015, a phase 2b clinical study was conducted to evaluate the efficacy of a single oral dose of Artefenomel (OZ439)-piperaquine (PPQ) in Asian and African patients presenting with uncomplicated falciparum malaria.

Methods: Blood samples collected before treatment offered the opportunity to investigate the proportion of multidrug resistant parasite genotypes, including P. falciparum kelch13 mutations and copy number variation of both P. falciparum plasmepsin 2 (Pfpm2) and P. falciparum multidrug resistance 1 (Pfmdr1) genes.

Results: Validated kelch13 resistance mutations including C580Y, I543T, P553L and V568G were only detected in parasites from Vietnamese patients. In Africa, isolates with multiple copies of the Pfmdr1 gene were shown to be more frequent than previously reported (21.1%, range from 12.4% in Burkina Faso to 27.4% in Uganda). More strikingly, high proportions of isolates with multiple copies of the Pfpm2 gene, associated with piperaquine (PPQ) resistance, were frequently observed in the African sites, especially in Burkina Faso and Uganda (> 30%).

Conclusions: These findings were considered to sharply contrast with the recent description of increased sensitivity to PPQ of Ugandan parasite isolates. This emphasizes the necessity to investigate in vitro susceptibility profiles to PPQ of African isolates with multiple copies of the Pfpm2 gene and estimate the risk of development of PPQ resistance in Africa. Trial registration Clinicaltrials.gov reference: NCT02083380. Study title: Phase II efficacy study of artefenomel and piperaquine in adults and children with P. falciparum malaria. https://ichgcp.net/clinical-trials-registry/NCT02083380&cntry=&state=&city=&dist= . FSFV: 23-Jul-2014; LSLV: 09-Oct-2015.

Conflict of interest statement

FM and DL are employees of Medicines for Malaria Venture. None of the other authors declare competing interests.

Figures

Fig. 1
Fig. 1
Pfmdr1 and Pfpm2 gene copy numbers of Plasmodium falciparum isolates collected from Southeast Asia (in red) and from Africa (in black). Proportion of the isolates from Southeast Asia and African are given for each group: Pfpm2 single copy/Pfmdr1 single copy (lower-left quadrant), Pfpm2 single copy/Pfmdr1 multiple copies (upper-left), Pfpm2 multiple copies/Pfmdr1 single copy (lower-right) and Pfpm2 multiple copies/Pfmdr1 multiple copies (upper-right)
Fig. 2
Fig. 2
Kelch13 mutations, Pfmdr1 and Pfpm2 gene copy numbers of Plasmodium falciparum isolates collected from four sites in Southeast Asia (a) and from nine sites in Africa (b). Each of the kelch13 mutations are presented with different symbols and colours. Open triangle represents isolates with unavailable kelch13 data. The four quadrants in both panels present isolates with Pfpm2 single copy/Pfmdr1 single copy (lower-left quandrant), Pfpm2 single copy/Pfmdr1 multiple copies (upper-left), Pfpm2 multiple copies/Pfmdr1 single copy (lower-right) and Pfpm2 multiple copies/Pfmdr1 multiple copies (upper-right)

References

    1. WHO . World malaria report 2010. Geneva: World Health Organization; 2010.
    1. WHO . World malaria report 2015. Geneva: World Health Organization; 2015.
    1. WHO . World malaria report 2017. Geneva: World Health Organization; 2017.
    1. Amaratunga C, Lim P, Suon S, Sreng S, Mao S, Sopha C, et al. Dihydroartemisinin–piperaquine resistance in Plasmodium falciparum malaria in Cambodia: a multisite prospective cohort study. Lancet Infect Dis. 2016;16:357–365. doi: 10.1016/S1473-3099(15)00487-9.
    1. Amato R, Pearson RD, Almagro-Garcia J, Amaratunga C, Lim P, Suon S, et al. Origins of the current outbreak of multidrug-resistant malaria in southeast Asia: a retrospective genetic study. Lancet Infect Dis. 2018;18:337–345. doi: 10.1016/S1473-3099(18)30068-9.
    1. Duru V, Khim N, Leang R, Kim S, Domergue A, Kloeung N, et al. Plasmodium falciparum dihydroartemisinin–piperaquine failures in Cambodia are associated with mutant K13 parasites presenting high survival rates in novel piperaquine in vitro assays: retrospective and prospective investigations. BMC Med. 2015;13:305. doi: 10.1186/s12916-015-0539-5.
    1. Imwong M, Hien TT, Thuy-Nhien NT, Dondorp AM, White NJ. Spread of a single multidrug resistant malaria parasite lineage (PfPailin) to Vietnam. Lancet Infect Dis. 2017;17:1022–1023. doi: 10.1016/S1473-3099(17)30524-8.
    1. Imwong M, Suwannasin K, Kunasol C, Sutawong K, Mayxay M, Rekol H, et al. The spread of artemisinin-resistant Plasmodium falciparum in the Greater Mekong subregion: a molecular epidemiology observational study. Lancet Infect Dis. 2017;17:491–497. doi: 10.1016/S1473-3099(17)30048-8.
    1. Leang R, Taylor WR, Bouth DM, Song L, Tarning J, Char MC, et al. Evidence of Plasmodium falciparum malaria multidrug resistance to artemisinin and piperaquine in Western Cambodia: dihydroartemisinin–piperaquine open-label multicenter clinical assessment. Antimicrob Agents Chemother. 2015;59:4719–4726. doi: 10.1128/AAC.00835-15.
    1. Menard D, Dondorp A. Antimalarial drug resistance: a threat to malaria elimination. Cold Spring Harb Perspect Med. 2017;7:025619. doi: 10.1101/cshperspect.a025619.
    1. Parobek CM, Parr JB, Brazeau NF, Lon C, Chaorattanakawee S, Gosi P, et al. Partner-drug resistance and population substructuring of artemisinin-resistant Plasmodium falciparum in Cambodia. Genome Biol Evol. 2017;9:1673–1686. doi: 10.1093/gbe/evx126.
    1. Phuc BQ, Rasmussen C, Duong TT, Dong LT, Loi MA, Menard D, et al. Treatment failure of dihydroartemisinin/piperaquine for Plasmodium falciparum malaria, Vietnam. Emerg Infect Dis. 2017;23:715–717. doi: 10.3201/eid2304.161872.
    1. Rossi G, De Smet M, Khim N, Kindermans JM, Menard D. Emergence of Plasmodium falciparum triple mutant in Cambodia. Lancet Infect Dis. 2017;17:1233. doi: 10.1016/S1473-3099(17)30635-7.
    1. Saunders DL, Vanachayangkul P, Lon C, US Army Military Malaria Research Program. National Center for Parasitology Entomology and Malaria Control. Royal Cambodian Armed Forces Dihydroartemisinin–piperaquine failure in Cambodia. N Engl J Med. 2014;371:484–485. doi: 10.1056/NEJMc1403007.
    1. Thanh NV, Thuy-Nhien N, Tuyen NT, Tong NT, Nha-Ca NT, Dong LT, et al. Rapid decline in the susceptibility of Plasmodium falciparum to dihydroartemisinin–piperaquine in the south of Vietnam. Malar J. 2017;16:27. doi: 10.1186/s12936-017-1680-8.
    1. Woodrow CJ, White NJ. The clinical impact of artemisinin resistance in Southeast Asia and the potential for future spread. FEMS Microbiol Rev. 2017;41:34–48. doi: 10.1093/femsre/fuw037.
    1. Mita T, Tanabe K, Kita K. Spread and evolution of Plasmodium falciparum drug resistance. Parasitol Int. 2009;58:201–209. doi: 10.1016/j.parint.2009.04.004.
    1. Amato R, Lim P, Miotto O, Amaratunga C, Dek D, Pearson RD, et al. Genetic markers associated with dihydroartemisinin–piperaquine failure in Plasmodium falciparum malaria in Cambodia: a genotype-phenotype association study. Lancet Infect Dis. 2017;17:164–173. doi: 10.1016/S1473-3099(16)30409-1.
    1. Ariey F, Witkowski B, Amaratunga C, Beghain J, Langlois AC, Khim N, et al. A molecular marker of artemisinin-resistant Plasmodium falciparum malaria. Nature. 2014;505:50–55. doi: 10.1038/nature12876.
    1. Witkowski B, Duru V, Khim N, Ross LS, Saintpierre B, Beghain J, et al. A surrogate marker of piperaquine-resistant Plasmodium falciparum malaria: a phenotype-genotype association study. Lancet Infect Dis. 2017;17:174–183. doi: 10.1016/S1473-3099(16)30415-7.
    1. WHO . Status report on artemisinin and ACT resistance. Geneva: World Health Organization; 2017.
    1. Flegg JA, Guerin PJ, Nosten F, Ashley EA, Phyo AP, Dondorp AM, et al. Optimal sampling designs for estimation of Plasmodium falciparum clearance rates in patients treated with artemisinin derivatives. Malar J. 2013;12:411. doi: 10.1186/1475-2875-12-411.
    1. Straimer J, Gnadig NF, Stokes BH, Ehrenberger M, Crane AA, Fidock DA. Plasmodium falciparum k13 mutations differentially impact ozonide susceptibility and parasite fitness in vitro. MBio. 2017;8:e00172-17. doi: 10.1128/mBio.00172-17.
    1. Witkowski B, Amaratunga C, Khim N, Sreng S, Chim P, Kim S, et al. Novel phenotypic assays for the detection of artemisinin-resistant Plasmodium falciparum malaria in Cambodia: in vitro and ex vivo drug-response studies. Lancet Infect Dis. 2013;13:1043–1049. doi: 10.1016/S1473-3099(13)70252-4.
    1. Dondorp AM, Nosten F, Yi P, Das D, Phyo AP, Tarning J, et al. Artemisinin resistance in Plasmodium falciparum malaria. N Engl J Med. 2009;361:455–467. doi: 10.1056/NEJMoa0808859.
    1. WHO . Artemisinin resistance and artemisinin-based combination therapy efficacy. Status report. Geneva: World Health Organization; 2018.
    1. Menard D, Khim N, Beghain J, Adegnika AA, Shafiul-Alam M, Amodu O, et al. A worldwide map of Plasmodium falciparum K13-propeller polymorphisms. N Engl J Med. 2016;374:2453–2464. doi: 10.1056/NEJMoa1513137.
    1. Gupta H, Macete E, Bulo H, Salvador C, Warsame M, Carvalho E, et al. Drug-resistant polymorphisms and copy numbers in Plasmodium falciparum, Mozambique, 2015. Emerg Infect Dis. 2018;24:40–48. doi: 10.3201/eid2401.170864.
    1. Inoue J, Silva M, Fofana B, Sanogo K, Mårtensson A, Sagara I, et al. Plasmodium falciparum plasmapepsin 2 duplications, West Africa. Emerg Infect Dis. 2018;24:1591–1593. doi: 10.3201/eid2408.180370.
    1. Rosenthal PJ. Artefenomel: a promising new antimalarial drug. Lancet Infect Dis. 2016;16:6–8. doi: 10.1016/S1473-3099(15)00343-6.
    1. Macintyre F, Adoke Y, Tiono AB, Duong TT, Mombo-Ngoma G, Bouyou-Akotet M, et al. A randomised, double-blind clinical phase II trial of the efficacy, safety, tolerability and pharmacokinetics of a single dose combination treatment with artefenomel and piperaquine in adults and children with uncomplicated Plasmodium falciparum malaria. BMC Med. 2017;15:181. doi: 10.1186/s12916-017-0940-3.
    1. Canier L, Khim N, Kim S, Sluydts V, Heng S, Dourng D, et al. An innovative tool for moving malaria PCR detection of parasite reservoir into the field. Malar J. 2013;12:405. doi: 10.1186/1475-2875-12-405.
    1. Blasco B, Leroy D, Fidock DA. Antimalarial drug resistance: linking Plasmodium falciparum parasite biology to the clinic. Nat Med. 2017;23:917–928. doi: 10.1038/nm.4381.
    1. Malaria GEN Plasmodium falciparum Community Project Genomic epidemiology of artemisinin resistant malaria. Elife. 2016;5:e08714. doi: 10.7554/eLife.08714.
    1. Cheeseman IH, Miller B, Tan JC, Tan A, Nair S, Nkhoma SC, et al. Population structure shapes copy number variation in malaria parasites. Mol Biol Evol. 2016;33:603–620. doi: 10.1093/molbev/msv282.
    1. Price RN, Uhlemann AC, van Vugt M, Brockman A, Hutagalung R, Nair S, et al. Molecular and pharmacological determinants of the therapeutic response to artemether-lumefantrine in multidrug-resistant Plasmodium falciparum malaria. Clin Infect Dis. 2006;42:1570–1577. doi: 10.1086/503423.
    1. Vinayak S, Alam MT, Sem R, Shah NK, Susanti AI, Lim P, et al. Multiple genetic backgrounds of the amplified Plasmodium falciparum multidrug resistance (pfmdr1) gene and selective sweep of 184F mutation in Cambodia. J Infect Dis. 2010;201:1551–1560. doi: 10.1086/651949.
    1. Kiaco K, Teixeira J, Machado M, do Rosario V, Lopes D. Evaluation of artemether–lumefantrine efficacy in the treatment of uncomplicated malaria and its association with pfmdr1, pfatpase6 and K13-propeller polymorphisms in Luanda, Angola. Malar J. 2015;14:504. doi: 10.1186/s12936-015-1018-3.
    1. Ngalah BS, Ingasia LA, Cheruiyot AC, Chebon LJ, Juma DW, Muiruri P, et al. Analysis of major genome loci underlying artemisinin resistance and pfmdr1 copy number in pre- and post-ACTs in western Kenya. Sci Rep. 2015;5:8308. doi: 10.1038/srep08308.
    1. Venkatesan M, Gadalla NB, Stepniewska K, Dahal P, Nsanzabana C, Moriera C, et al. Polymorphisms in Plasmodium falciparum chloroquine resistance transporter and multidrug resistance 1 genes: parasite risk factors that affect treatment outcomes for P. falciparum malaria after artemether–lumefantrine and artesunate–amodiaquine. Am J Trop Med Hyg. 2014;91:833–843. doi: 10.4269/ajtmh.14-0031.
    1. Duah NO, Matrevi SA, de Souza DK, Binnah DD, Tamakloe MM, Opoku VS, et al. Increased pfmdr1 gene copy number and the decline in pfcrt and pfmdr1 resistance alleles in Ghanaian Plasmodium falciparum isolates after the change of anti-malarial drug treatment policy. Malar J. 2013;12:377. doi: 10.1186/1475-2875-12-377.
    1. Gadalla NB, Adam I, Elzaki SE, Bashir S, Mukhtar I, Oguike M, et al. Increased pfmdr1 copy number and sequence polymorphisms in Plasmodium falciparum isolates from Sudanese malaria patients treated with artemether–lumefantrine. Antimicrob Agents Chemother. 2011;55:5408–5411. doi: 10.1128/AAC.05102-11.
    1. Bopp S, Magistrado P, Wong W, Schaffner SF, Mukherjee A, Lim P, et al. Plasmepsin II–III copy number accounts for bimodal piperaquine resistance among Cambodian Plasmodium falciparum. Nat Commun. 2018;9:1769. doi: 10.1038/s41467-018-04104-z.
    1. Rasmussen SA, Ceja FG, Conrad MD, Tumwebaze PK, Byaruhanga O, Katairo T, et al. Changing antimalarial drug sensitivities in Uganda. Antimicrob Agents Chemother. 2017;61:e01516–e01517. doi: 10.1128/AAC.01516-17.
    1. West African Network for Clinical Trials of Antimalarial Drugs Pyronaridine–artesunate or dihydroartemisinin–piperaquine versus current first-line therapies for repeated treatment of uncomplicated malaria: a randomised, multicentre, open-label, longitudinal, controlled, phase 3b/4 trial. Lancet. 2018;391:1378–1390. doi: 10.1016/S0140-6736(18)30291-5.
    1. Agrawal S, Moser KA, Morton L, Cummings MP, Parihar A, Dwivedi A, et al. Association of a novel mutation in the Plasmodium falciparum chloroquine resistance transporter with decreased piperaquine sensitivity. J Infect Dis. 2017;216:468–476. doi: 10.1093/infdis/jix334.
    1. Dhingra SK, Redhi D, Combrinck JM, Yeo T, Okombo J, Henrich PP, et al. A variant PfCRT isoform can contribute to Plasmodium falciparum resistance to the first-line partner drug piperaquine. MBio. 2017;8:e00303–e00317. doi: 10.1128/mBio.00303-17.
    1. Ross LS, Dhingra SK, Mok S, Yeo T, Wicht KJ, Kümpornsin K, et al. Emerging Southeast Asian PfCRT mutations confer Plasmodium falciparum resistance to the first-line antimalarial piperaquine. Nat Commun. 2018;9:3314. doi: 10.1038/s41467-018-05652-0.

Source: PubMed

3
订阅