Extraction and Analysis of Phenolic Compounds in Rice: A Review

Marco Ciulu, Maria de la Luz Cádiz-Gurrea, Antonio Segura-Carretero, Marco Ciulu, Maria de la Luz Cádiz-Gurrea, Antonio Segura-Carretero

Abstract

Rice represents the main source of calorie intake in many world countries and about 60% of the world population include rice in their staple diet. Whole grain rice, also called brown rice, represent the unpolished version of the more common white rice including bran, germ, and endosperm. Many health-promoting properties have been associated to the consumption of whole grain rice and, for this reason, great attention has been paid by the scientific community towards the identification and the quantification of bioactive compounds in this food item. In this contribution, the last five years progresses in the quali-quantitative determination of phenolic compounds in rice have been highlighted. Special attention has been devoted to the most recent strategies for the extraction of the target compounds from rice along with the analytical approaches adopted for the separation, identification and quantification of phenolic acids, flavonoids, anthocyanins, and proanthocyanidins. More specifically, the main features of the "traditional" extraction methods (i.e., maceration, ultrasound-assisted extraction) have been described, as well as the more innovative protocols involving advanced extraction techniques, such as MAE (microwave-assisted extraction). The predominant role of HPLC in the definition of the phenolic profile has been examined also presenting the most recent results obtained by using mass spectrometry-based detection systems. In addition, the most common procedures aimed to the quantification of the total amount of the cited classes of phenolic compounds have been described together with the spectrophotometric protocols aimed to the evaluation of the antioxidant properties of rice phenolic extracts (i.e., FRAP, DPPH, ABTS and ORAC).

Keywords: HPLC methods; anthocyanins; antioxidant activity; extraction; flavonoids; phenolic acids; phenolic compounds; proanthocyanidins; rice.

Conflict of interest statement

The authors declare no conflict of interest.

Figures

Figure 1
Figure 1
Hydroxybenzoic (a) and hydroxycinnamic acids (b) commonly found in rice.
Figure 2
Figure 2
Some flavonoids commonly found in rice.
Figure 3
Figure 3
Some common anthocyanins detected in rice [2].
Figure 4
Figure 4
Extraction of free and bound phenolics as described by Sumczynski et al. (2017) [14].
Figure 5
Figure 5
Microwave assisted extraction (MAE) of phenolic compounds from rice as described by Setyaningsih et al. (2015) [34].

References

    1. Papademetriou M.K. Rice production in the Asia-Pacific region: Issues and perspectives. In: Papademetriou M.K., Dent F.J., Herath E.M., editors. Bridging the Rice Yield Gap in the Asia-Pacific Region. Food and Agriculture Organization of the United Nations Regional Office for Asia and the Pacific; Bangkok, Thailand: 2000. pp. 4–25.
    1. Shao Y., Bao J. Polyphenols in whole rice grain: Genetic diversity and health benefits. Food Chem. 2015;180:86–97. doi: 10.1016/j.foodchem.2015.02.027.
    1. Hallfrisch J., Scholfield J., Behall K.M. Blood pressure reduced by whole grain diet containing barley or whole wheat and brown rice in moderately hypercholesterolemic men. Nutr. Res. 2003;23:1631–1642. doi: 10.1016/j.nutres.2003.08.014.
    1. Sakamoto S., Hayashi T. Pre-germinated brown rice could enhance maternal mental health and immunity during lactation. Eur. J. Nutr. 2007;46:391–396. doi: 10.1007/s00394-007-0678-3.
    1. Imam M.U., Azmi N.H., Bhanger M.I., Ismail N., Ismail M. Antidiabetic properties of germinated brown rice: A systematic review. Evid.-Based Complement. Alternat. Med. 2012;2012:816501. doi: 10.1155/2012/816501.
    1. Adom K.K., Liu R.H. Antioxidant activity of grains. J. Agric. Food Chem. 2002;50:6182–6187. doi: 10.1021/jf0205099.
    1. Pedro A.C., Granato D., Rosso N.V. Extraction of anthocyanins and polyphenols from black rice (Oryza sativa L.) by modelling and assessing their reversibility and stability. Food Chem. 2016;191:12–20. doi: 10.1016/j.foodchem.2015.02.045.
    1. Chen P.N., Kuo W.H., Chiang C.L., Chiou H.L., Hsieh Y.S., Chu S.C. Black rice anthocyanins inhibit cancer cells invasion via repressions of MMPs and u-PA expression. Chem.-Biol. Interact. 2006;163:218–229. doi: 10.1016/j.cbi.2006.08.003.
    1. Yang Y., Andrews M.C., Hu Y., Wang D., Qin Y., Zhu Y., Ni H., Ling W. Anthocyanin Extract from Black Rice Significantly Ameliorates Platelet Hyperactivity and Hypertriglyceridemia in Dyslipidemic Rats Induced by High Fat Diets. J. Agric. Food Chem. 2011;59:6759–6764. doi: 10.1021/jf201079h.
    1. Gunaratne A., Wu K., Li D., Bentota A., Corke H., Cai Y.Z. Antioxidant activity and nutritional quality of traditional red-grained rice varieties containing proanthocyanidins. Food Chem. 2013;138:1153–1161. doi: 10.1016/j.foodchem.2012.11.129.
    1. Putnik P., Lorenzo J.M., Barba F.J., Roohinejad S., Jambrak A.R., Granato D., Montesano D., Bursać Kovačević D. Novel food processing and extraction technologies of high-added value compounds from plant materials. Foods. 2018;7:106. doi: 10.3390/foods7070106.
    1. Bursać Kovačević D., Maras M., Barba F.J., Granato D., Roohinejad S., Mallikarjuan K., Montesano D., Lorenzo J.M., Putnik P. Innovative technologies for the recoveries of phytochemicals from Stevia rebaudiana Bertoni leaves: A review. Food Chem. 2018;268:513–521. doi: 10.1016/j.foodchem.2018.06.091.
    1. Chan K.W., Khong N.M.H., Iqbal S., Ismail M. Isolation and atioxidative properties of phenolics-saponin rich fraction from defatted rice bran. J. Ceral Sci. 2013;57:480–485. doi: 10.1016/j.jcs.2013.02.002.
    1. Sumczynski D., Kotàskovà E., Orsavovà J., Valàšek P. Contribution of individual phenolics to antioxidant activity and in vitro digestibility of wild rices (Zizania aquatica L.) Food Chem. 2017;218:107–115. doi: 10.1016/j.foodchem.2016.09.060.
    1. Liu L., Guo J., Zhang R., Wei Z., Deng Y., Guo J., Zhang M. Effect of degree of milling on phnolic profiles and cellular antioxidant activity of whole brown rice. Food Chem. 2015;185:318–325. doi: 10.1016/j.foodchem.2015.03.151.
    1. Goufo P., Pereira J., Figueiredo N., Oliveira M.B.P.P., Carranca C., Rosa E.A.S., Trindade H. Effect of elevated carbon dioxide (CO2) on phenolic acids, flavonoids, tocopherols, tocotrienols, γ-oryzanol and antioxidant capacities of rice (Oryza sativa L.) J. Cereal Sci. 2014;59:15–24. doi: 10.1016/j.jcs.2013.10.013.
    1. Ti H., Zhang R., Zhang M., Wei Z., Chi J., Deng Y., Zhang Y. Effect of extrusion on phytochemical profiles in milled fraction of black rice. Food Chem. 2015;178:186–194. doi: 10.1016/j.foodchem.2015.01.087.
    1. Karimi E., Mehrabanjoubani P., Keshavarzian M., Oskoueian E., Jaafar H.Z.E., Abdolzadeh A. Identification and quantification of phenolic and flavonoid components in straw and seed husk of some rice varieties (Oryza sativa L.) and their antioxidant properties. J. Sci. Food. Agric. 2014;94:2324–2330. doi: 10.1002/jsfa.6567.
    1. Shao Y., Xu F., Sun X., Bao J., Beta T. Identification and quantification of phenolic acids and anthocyanins as antioxidants in bran, embryoand endosperm of white, red and black rice kernels (Oryza sativa L.) J. Cereal Sci. 2014;59:211–218. doi: 10.1016/j.jcs.2014.01.004.
    1. Rumruaytum P., Borompichaichartkul C., Kongpensook V. Effect of drying involving fluidisation in superheated steam on physicochemical and antioxidant properties of Thai native rice cultivars. J. Food Eng. 2014;123:143–147. doi: 10.1016/j.jfoodeng.2013.08.025.
    1. Wanyo P., Meeso N., Siriamornpun S. Effect of different treatments on the antioxidant properties and phenolic compounds of rice bran and rice husk. Food Chem. 2014;157:457–463. doi: 10.1016/j.foodchem.2014.02.061.
    1. Esa N.M., Kadir K.K.A., Amom Z., Azlan A. Antioxidant activity of white rice, brown rice and germinated brown rice (in vivo and in vitro) and the effects on lipid peroxidation and liver enzymes in hyperlipidaemic rabbits. Food Chem. 2013;141:1306–1312.
    1. Chatthongpisut R., Schwartz S.J., Yongsawatdigul J. Antioxidant activities and antiproliferative activity of Thai purple rice cooked by various methods on human color cancer cells. Food Chem. 2015;188:99–105. doi: 10.1016/j.foodchem.2015.04.074.
    1. Zhou Z., Chen X., Zhang M., Blanchard C. Phenolics, flavonoids, proanthocyanidin and antioxidant activity of brown rice with different pericarp colors following storage. J. Stored Prod. Res. 2014;59:120–125. doi: 10.1016/j.jspr.2014.06.009.
    1. Alves G.H., Ferreira C.D., Vivian P.G., Monks J.L.F., Elias M.C., Vanier N.L., de Oliveira M. The revisited levels of free and bound phenolics in rice. Food Chem. 2016;208:116–123.
    1. Pitija K., Nakornriab M., Sriseadka T., Vanavichit A., Wongpornchai S. Anthocyanin content and antioxidant capacity in bran extracts of some Thai black rice varieties. Int. J. Food Sci. Technol. 2013;48:300–308. doi: 10.1111/j.1365-2621.2012.03187.x.
    1. Bordiga M., Gomez-Alonso S., Locatelli M., Travaglia F., Coïsson J.D., Hermosin-Gutierrez I., Arlorio M. Phenolics characterization and antioxidant activity of six different pigmented Oryza sativa L. cultivars grown in Piedmont (Italy) Food Res. Int. 2014;65:282–290. doi: 10.1016/j.foodres.2014.03.007.
    1. Sumczynski D., Kotàskovà E., Družbikovà H., Mlček J. Determination of contents and antioxidant activity of free and bound phenolics compounds and in vitro digestibility of commercial black and red rice (Oriza sativa L.) Food Chem. 2016;211:339–346. doi: 10.1016/j.foodchem.2016.05.081.
    1. Mason T.J., Paniwnyk L., Lorimer J.P. The uses of ultrasound in food technology. Ultrason. Sonochem. 1996;3:S253–S260. doi: 10.1016/S1350-4177(96)00034-X.
    1. Azmir J., Zaidul I.S.M., Rahman M.M., Sharif K.M., Mohamed A., Sahena F., Jahurul M.H.A., Ghafoor K., Norulaini N.A.N., Omar A.K.M. Techniques for extraction of bioactive compounds from plant materials: A review. J. Food Eng. 2013;117:426–436. doi: 10.1016/j.jfoodeng.2013.01.014.
    1. Piana F., Ciulu M., Quirantes-Piné R., Sanna G., Segura-Carretero A., Spano N., Mariani A. Simple and rapid procedires for the extraction of bioactive compounds from Guayule leaves. Ind. Crop. Prod. 2018;116:162–169. doi: 10.1016/j.indcrop.2018.02.057.
    1. Rocchetti G., Lucini L., Chiodelli G., Giuberti G., Montesano D., Masoero F., Trevisan M. Impact of boiling of on free and bound phenolic profile and antioxidant activity of commercial gluten-free pasta. Food Res. Int. 2017;100:69–77. doi: 10.1016/j.foodres.2017.08.031.
    1. Sirisena S., Zabaras D., Ng K., Ajilouni S. Characterization of Date (Daglet Nour) seed and bound polyphenols by high-performance liquid chromatography-mass spectrometry. J. Food Sci. 2017;82:333–340. doi: 10.1111/1750-3841.13625.
    1. Setyaningsih W., Saputro I.E., Palma M., Barroso C.G. Optimisation and validation of the microwave-assisted extraction of phenolic compounds from rice grains. Food Chem. 2015;169:141–149. doi: 10.1016/j.foodchem.2014.07.128.
    1. Santi Stefanello F., Obem dos Santos C., Caetano Bochi V., Burin Fruet A.P., Bromenberg Soquetta M., Dörr A.C., Nörnberg J.L. Analysis of polyphenols in brewer’s spent grain and its comparison with corn silage and cereal brans commonly used for animal nutrition. Food Chem. 2018;239:385–401. doi: 10.1016/j.foodchem.2017.06.130.
    1. Min B., McClung A., Chen M.H. Effect of hydrothermal processes on antioxidants in brown, purple and red bran whole grain rice (Oryza sativa L.) Food Chem. 2014;159:106–115. doi: 10.1016/j.foodchem.2014.02.164.
    1. Niu Y., Gao B., Slavin M., Zhang X., Yang F., Bao J., Shi H., Xie Z., Yu L. Phytochemical compositions, and antioxidant and anti-inflammatory properties of twenty-two red rice samples grown in Zhejiang. LWT-Food Sci. Technol. 2013;54:521–527. doi: 10.1016/j.lwt.2013.06.018.
    1. Fernandes Paiva F., Levien Vanier N., De Jesus Berrios J., Pan J., De Almeida Villanova F., Takeoka G., Cardoso Elias M. Physicochemical and nutritional properties of pigmented rice subjected to different degrees of milling. J. Food Compos. Anal. 2014;35:10–17. doi: 10.1016/j.jfca.2014.05.003.
    1. Ti H., Li Q., Zhang R., Zhang M., Deng Y., Wei Z., Chi J., Zhang Y. Free and bound phenolic profiles and antioxidant activity of milled fractions of different indica rice varieties cultivated in southern China. Food Chem. 2014;159:166–174. doi: 10.1016/j.foodchem.2014.03.029.
    1. Goufo P., Pereira J., Moutinho-Pereira J., Correia C.M., Figueiredo N., Carranca C., Rosa E.A.S., Trindade H. Rice (Oryza sativa L.) phenolic compounds under elevated carbon dioxide (CO2) concentration. Environ. Exp. Bot. 2014;99:28–37. doi: 10.1016/j.envexpbot.2013.10.021.
    1. Phetpornpaisan P., Tippayawat P., Jay M., Sutthanut K. A local Thai cultivar glutinous black rice bran: A source of functional compounds in immunomodulation, cell viability and collagen synthesis, and matrix metalloproteinase-2 and -9 inhibition. J. Funct. Food. 2014;7:650–661. doi: 10.1016/j.jff.2013.12.020.
    1. Huang Y.P., Lai H.M. Bioactive compounds and antioxidative activity of colored rice bran. J. Food Drug Anal. 2016;24:564–574. doi: 10.1016/j.jfda.2016.01.004.
    1. Wang W., Guo J., Zhang J., Peng J., Liu T., Xin Z. Isolation, identification and antioxidant activity of bound phenolic compounds present in rice bran. Food Chem. 2015;171:40–49. doi: 10.1016/j.foodchem.2014.08.095.
    1. Kim J.K., Park S.Y., Lim S.H., Yeo Y., Cho H.S., Ha S.H. Comparative metabolic profiling of pigmented rice (Oryza sativa L.) cultivars reveals primary metabolites are correlated with secondary metabolites. J. Cereal Sci. 2013;57:14–20. doi: 10.1016/j.jcs.2012.09.012.
    1. Yodpitak S., Sookwong P., Akkaravessapong P., Wongpornchai S. Changes in antioxidant activity and antioxidative compounds of brown rice after pre-germination. J. Food Nutr. Res. 2013;1:132–137.
    1. ISO/IEC 17025:2005 General Requirements for the Competence of Testing and Calibration Laboratories. [(accessed on 5 November 2018)]; Available online: .
    1. Procedural Manual of the Codex Alimentarius Commission. [(accessed on 5 November 2018)]; Available online: .
    1. Council Directive 93/99/EEC on the Subject of Additional Measures Concerning the Official Control of Foodstuffs. [(accessed on 5 November 2018)]; Available online: .
    1. Xie F.Y., Bi W.W., Wang X.J., Zhang X.L., Zhang X.N., Zhao G.X., Liu Q.Q. Extraction and identification of black rice polyphenolic compounds by reversed phase high performance liquid chromatography-electrospray ionization mass spectrometry. J. Food Process. Preserv. 2017;41:1–6. doi: 10.1111/jfpp.13119.
    1. Walter M., Marchesan E., Sachet Massoni P.F., Picolli da Silva L., Meneghetti Sarzi Sartori G., Bruck Ferreira R. Antioxidant properties of rice grains with light brown, red and black pericarps colors and the effect of processing. Food Res. Int. 2013;50:698–703. doi: 10.1016/j.foodres.2011.09.002.
    1. Ames B. Dietary carcinogens and anticarcinogens. Oxygen radicals and degenerative diseases. Science. 1983;221:1256–1264. doi: 10.1126/science.6351251.
    1. Re R., Pellegrini N., Proteggente A., Pannala A., Yang M., Rice-Evans C. Antioxidant activity applying an improved ABTS radical cation decolorization assay. Free Radic. Biol. Med. 1999;26:1231–1237. doi: 10.1016/S0891-5849(98)00315-3.
    1. Sompong R., Siebenhandl-Ehn S., Linsberger-Martin G., Berghofer E. Physicochemical and antioxidative properties of red and black rice varieties from Thailand, China and Sri Lanka. Food Chem. 2011;124:132–140. doi: 10.1016/j.foodchem.2010.05.115.
    1. Zhang H., Shao Y., Bao J., Beta T. Phenolic compounds and antioxidant properties of breeding lines between the white and black rice. Food Chem. 2015;172:630–639. doi: 10.1016/j.foodchem.2014.09.118.
    1. Apak R., Güçlü K., Demirata B., Özyürek M., Çelik S.E., Bektaşoğlu B., Berker K.I., Özyurt D. Comparative Evaluation of Various Total Antioxidant Capacity Assays Applied to Phenolic Compounds with the CUPRAC Assay. Molecules. 2007;12:1496–1547. doi: 10.3390/12071496.
    1. Benzie I.F.F., Strain J.J. The ferric reducing ability of plasma (FRAP) as a measure of “antioxidant power”: The FRAP assay. Anal. Biochem. 1996;239:70–76. doi: 10.1006/abio.1996.0292.
    1. Palombini S.V., Maruyama S.A., Claus T., Carbonera F., Souza N.E., Visentainer J.V., Gomes S.T.M., Matsushita M. Evaluation of antioxidant potential of Brazilian rice cultivars. Food Sci. Technol. 2013;33:699–704. doi: 10.1590/S0101-20612013000400015.
    1. Chen M.H., McClung A.M., Bergman C.J. Concentrations of oligomers and polymers of proanthocyanidins in red and purple rice bran and their relationships to total phenolics, flavonoids, antioxidant capacity and whole grain color. Food Chem. 2016;208:279–287. doi: 10.1016/j.foodchem.2016.04.004.
    1. Anwar F., Zengin G., Alkharfy K.M., Marcu M. Wild rice (Zizania sp.): A potential source of valkigabile ingredients for nutraceuticals and functional foods. Riv. Ital. Delle Sostanze Grasse. 2017;94:81–89.
    1. Cáceres P.J., Martínez-Villaluenga C., Amigo L., Frias J. Maximising the phytochemical content and antioxidant activity of Ecuadorian brown rice sprouts through optimal germination conditions. Food Chem. 2014;152:407–414. doi: 10.1016/j.foodchem.2013.11.156.

Source: PubMed

3
订阅