A preliminary trial examining a 'real world' approach for increasing physical activity among breast cancer survivors: findings from project MOVE

Cristina M Caperchione, Catherine M Sabiston, Sean Stolp, Joan L Bottorff, Kristin L Campbell, Neil D Eves, Susan L Ellard, Carolyn Gotay, Paul Sharp, Tanya Pullen, Kayla M Fitzpatrick, Cristina M Caperchione, Catherine M Sabiston, Sean Stolp, Joan L Bottorff, Kristin L Campbell, Neil D Eves, Susan L Ellard, Carolyn Gotay, Paul Sharp, Tanya Pullen, Kayla M Fitzpatrick

Abstract

Background: Physical activity (PA) is a safe and effective strategy to help mitigate health challenges associated with breast cancer (BC) survivorship. However, the majority of BC survivors are not meeting the minimum recommended PA (≥150 min of moderate to vigorous intensity). Project MOVE was developed as a model for increasing PA that combined a) Microgrants: funds ($2000) awarded to applicant groups to develop and implement a PA initiative and b) Financial incentives: a reward ($500) for increasing group PA. The purpose of this paper was to provide an exploratory analysis of effectiveness of Project MOVE on PA behavior, PA motivation, and quality of life (QoL) in female BC survivors. The differential outcomes between women meeting and not meeting PA guidelines were also investigated.

Methods: This pre-post test, preliminary trial included groups of adult (18+ years) self-identified female BC survivors, who were post-surgery and primary systemic chemo- and radiation therapy, and living in British Columbia, Canada. PA was assessed by accelerometry. PA motivation and QoL were assessed by self-report. Data were collected at baseline, 6-months, and 12-month time points. Repeated measures mixed ANOVAs were used to test changes in the main outcomes.

Results: A total of 10 groups were awarded microgrants between May 2015 and January 2016. Groups comprised of 8 to 12 women with a total of 87 participants. A statistically significant increase was found between time points on weekly moderate to vigorous PA (p = .012). This was mediated by a significant interaction between those meeting PA guidelines and those not meeting guidelines at baseline by time points (p = .004), with those not meeting guidelines at baseline showing the greatest increase in MVPA. A statistically significant difference across time points was found for intrinsic motivation (p = .02), physical functioning (p < .001), physical health limitations (p = .001), emotional health limitations (p = .023), social functioning (p = .001) and general health (p = .004).

Conclusion: These results provide promising support for a unique approach to increasing PA among BC survivors by empowering women and optimizing PA experiences through the use of microgrants and financial incentives.

Trial registration: ClinicalTrials.gov NCT03548636 , Retrospectively registered June 7, 2018.

Keywords: Breast cancer survivors; Community-based intervention; Financial incentives; Microgrants; Oncology care; Physical activity; Women.

Conflict of interest statement

Ethics approval and consent to participate

This study was approved by the Behavioral Research Ethics Board at the University of British Columbia (#H14–02502). Informed written consent was obtained from all participants prior to baseline assessments.

Consent for publication

Not applicable

Competing interests

The authors declare that they have no competing interests.

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Figures

Fig. 1
Fig. 1
MVPA Means by Time Point by Group

References

    1. Ferlay J, Soerjomataram I, Evrik M, Dikshit R, Eser S, Mathers C, Rebelo M, Parkin D, Forman D, Bray F: Cancer incidence and mortality worldwide. In: IARC CancerBase No11. Lyon, FR: International Agency for Research on Cancer; 2014.
    1. Canadian Cancer Society’s Advisory Committee on Cancer Statistics: Canadian Cancer Statistics 2017. In. Toronto, ON: Canadian Cancer Society 2017.
    1. Cleeland CS, Zhao F, Chang VT, Sloan JA, O'Mara AM, Gilman PB, Weiss M, Mendoza TR, Lee JW, Fisch MJ. The symptom burden of cancer: evidence for a core set of cancer-related and treatment-related symptoms from the eastern cooperative oncology group symptom outcomes and practice patterns study. Cancer. 2013;119(24):4333–4340.
    1. Demark-Wahnefried W, Aziz NM, Rowland JH, Pinto BM. Riding the crest of the teachable moment: promoting long-term health after the diagnosis of cancer. J Clin Oncol. 2005;23(24):5814–5830.
    1. Ibrahim EM, Al-Homaidh A. Physical activity and survival after breast cancer diagnosis: meta-analysis of published studies. Med Oncol. 2011;28(3):753–765.
    1. Schmitz KH, Courneya KS, Matthews C, Demark-Wahnefried W, Galvao DA, Pinto BM, Irwin ML, Wolin KY, Segal RJ, Lucia A, et al. American College of Sports Medicine roundtable on exercise guidelines for cancer survivors. Med Sci Sports Exerc. 2010;42(7):1409–1426.
    1. Kim J, Choi WJ, Jeong SH. The effects of physical activity on breast cancer survivors after diagnosis. J Cancer Prev. 2013;18(3):193–200.
    1. Demark-Wahnefried W, Rogers LQ, Alfano CM, Thomson CA, Courneya KS, Meyerhardt JA, Stout NL, Kvale E, Ganzer H, Ligibel JA. Practical clinical interventions for diet, physical activity, and weight control in cancer survivors. CA Cancer J Clin. 2015;65(3):167–189.
    1. Sabiston CM, Brunet J, Burke S. Pain, movement, and mind: does physical activity mediate the relationship between pain and mental health among survivors of breast cancer. Clin J Pain. 2012;28(6):489–495.
    1. Shin WK, Song S, Jung SY, Lee E, Kim Z, Moon HG, Noh DY, Lee JE. The association between physical activity and health-related quality of life among breast cancer survivors. Health Qual Life Outcomes. 2017;15(1):132.
    1. Lahart IM, Metsios GS, Nevill AM, Carmichael AR. Physical activity, risk of death and recurrence in breast cancer survivors: a systematic review and meta-analysis of epidemiological studies. Acta Oncol. 2015;54(5):635–654.
    1. Lynch BM, Dunstan DW, Healy GN, Winkler E, Eakin E, Owen N: Objectively measured physical activity and sedentary time of breast cancer survivors, and associations with adiposity: findings from NHANES(2003-2006). Cancer Causes Control 2010, 21(2):283–288.
    1. Blanchard CM, Courneya KS, Stein K: Cancer survivors' adherence to lifestyle behavior recommendations and associations with health-related quality of life: results from the American Cancer Society's SCS-II. J Clin Oncol 2008, 26(13):2198–2204.
    1. Mason C, Alfano CM, Smith AW, Wang CY, Neuhouser ML, Duggan C, Bernstein L, Baumgartner KB, Baumgartner RN, Ballard-Barbash R, et al. Long-term physical activity trends in breast cancer survivors. Cancer Epidemiol Biomark Prev. 2013;22(6):1153–1161.
    1. Bobbitt-Cooke M: Energizing community health improvement: the promise of microgrants. Prev Chronic Dis 2005, :A16.
    1. Caperchione C, Mummery WK, Joyner K. WALK community Grants scheme: lessons learned in developing and administering a health promotion microgrants program. Health Promot Pract. 2010;11(5):637–644.
    1. Collie-Akers V, Schultz JA, Carson V, Fawcett SB, Ronan M. Evaluating mobilization strategies with neighborhood and faith organizations to reduce risk for health disparities. Health Promot Pract. 2009;10(2 Suppl):118S–127S.
    1. Schmidt M, Plochg T, Harting J, Klazinga NS, Stronks K. Micro grants as a stimulus for community action in residential health programmes: a case study. Health Promot Int. 2009;24(3):234–242.
    1. Pullen T, Bottorff JL, Sabiston CM, Campbell KL, Eves ND, Ellard SL, Gotay C, Fitzpatrick K, Sharp P, Caperchione CM. Utilizing RE-AIM to examine the translational potential of project MOVE, a novel intervention for increasing physical activity levels in breast cancer survivors. Transl Behav Med. 2018.
    1. Pullen T, Sharp P, Bottorff JL, Sabiston CM, Campbell KL, Ellard SL, Gotay C, Fitzpatrick K, Caperchione CM. Acceptability and satisfaction of project MOVE: a pragmatic feasibility trial aimed at increasing physical activity in female breast cancer survivors. Psychooncology. 2018;27(4):1251–1256.
    1. Caperchione CM, Sabiston CM, Clark MI, Bottorff JL, Toxopeus R, Campbell KL, Eves ND, Ellard SL, Gotay C. Innovative approach for increasing physical activity among breast cancer survivors: protocol for project MOVE, a quasi-experimental study. BMJ Open. 2016;6(8):e012533.
    1. Defining Cancer Survivorship [].
    1. Troiano RP, Berrigan D, Dodd KW, Masse LC, Tilert T, McDowell M. Physical activity in the United States measured by accelerometer. Med Sci Sports Exerc. 2008;40(1):181–188.
    1. Freedson PS, Melanson E, Sirard J. Calibration of the computer science and applications, Inc. accelerometer. Med Sci Sports Exerc. 1998;30(5):777–781.
    1. Shiroma EJ, Cook NR, Manson JE, Buring JE, Rimm EB, Lee IM. Comparison of self-reported and accelerometer-assessed physical activity in older women. PLoS One. 2015;10(12):e0145950.
    1. Livingston PM, Craike MJ, Salmon J, Courneya KS, Gaskin CJ, Fraser SF, Mohebbi M, Broadbent S, Botti M, Kent B et al: Effects of a clinician referral and exercise program for men who have completed active treatment for prostate cancer: a multicenter cluster randomized controlled trial (ENGAGE). Cancer 2015, 121(15):2646–2654.
    1. Fukuoka Y, Haskell W, Vittinghoff E: New insights into discrepancies between self-reported and accelerometer-measured moderate to vigorous physical activity among women - the mPED trial. BMC Public Health 2016, 16(1):761.
    1. Tucker JM, Welk GJ, Beyler NK, Kim Y. Associations between physical activity and metabolic syndrome: comparison between self-report and Accelerometry. Am J Health Promot. 2016;30(3):155–162.
    1. Duncan LR, Hall CR, Wilson PM, Jenny O. Exercise motivation: a cross-sectional analysis examining its relationships with frequency, intensity, and duration of exercise. Int J Behav Nutr Phys Act. 2010;7:7.
    1. Sicilia A, Saenz-Alvarez P, Gonzales-Cutre D, Ferris R. Exercise motivation and social physique anxiety in adolescents. Psychologica Belgica. 2014:54.
    1. Deci EL, Ryan RM. Intrinsic motivation and self-determination in human behavior. New York: Plenum; 1985.
    1. Ryan RM, Deci EL: The "what" and "why" of goal pursuits: human needs and the self-determination of behavior. Psychol Inq 2001, 11:227–268.
    1. Wilson PM, Sabiston CM, Mack DM, Blanchard CM. On the nature and function of scoring protocols used in exercise motivation research: an empirical study of the behavioral regulation in exercise questionnaire. Psych Sport Exer. 2013;13:614–622.
    1. Hays RD, Morales LS: The RAND-36 measure of health-related quality of life. Ann Med 2001, 33(5):350–357.
    1. Ware JE, Jr., Sherbourne CD: The MOS 36-item short-form health survey (SF-36). I. Conceptual framework and item selection. Med Care 1992, 30(6):473–483.
    1. Hays RD, Sherbourne CD, Mazel RM. The RAND 36-item health survey 1.0. Health Econ. 1993;2(3):217–227.
    1. Billingham SA, Whitehead AL, Julious SA. An audit of sample sizes for pilot and feasibility trials being undertaken in the United Kingdom registered in the United Kingdom clinical research network database. BMC Med Res Methodol. 2013;13:104.
    1. Arain M, Campbell MJ, Cooper CL, Lancaster GA: What is a pilot or feasibility study? A review of current practice and editorial policy. BMC Med Res Methodol 2010, 10:67.
    1. Bell ML, Whitehead AL, Julious SA. Guidance for using pilot studies to inform the design of intervention trials with continuous outcomes. Clin Epidemiol. 2018;10:153–157.
    1. Ainsworth BE, Haskell WL, Herrmann SD, Meckes N, Bassett DR, Jr, Tudor-Locke C, Greer JL, Vezina J, Whitt-Glover MC, Leon AS. 2011 compendium of physical activities: a second update of codes and MET values. Med Sci Sports Exerc. 2011;43(8):1575–1581.
    1. Brunet J, Taran S, Burke S, Sabiston CM. A qualitative exploration of barriers and motivators to physical activity participation in women treated for breast cancer. Disabil Rehabil. 2013;35(24):2038–2045.
    1. Rogers LQ, Courneya KS, Verhulst S, Markwell SJ, McAuley E. Factors associated with exercise counseling and program preferences among breast cancer survivors. J Phys Act Health. 2008;5(5):688–705.
    1. McAuley E, Blissmer B. Self-efficacy determinants and consequences of physical activity. Exerc Sport Sci Rev. 2000;28(2):85–88.
    1. Hagberg LA, Lindahl B, Nyberg L, Hellenius ML. Importance of enjoyment when promoting physical exercise. Scand J Med Sci Sports. 2009;19(5):740–747.
    1. Dunton GF, Vaughan E. Anticipated affective consequences of physical activity adoption and maintenance. Health Psychol. 2008;27(6):703–710.
    1. Mullen SP, Olson EA, Phillips SM, Szabo AN, Wojcicki TR, Mailey EL, Gothe NP, Fanning JT, Kramer AF, McAuley E. Measuring enjoyment of physical activity in older adults: invariance of the physical activity enjoyment scale (paces) across groups and time. Int J Behav Nutr Phys Act. 2011;8:103.
    1. Spark LC, Reeves MM, Fjeldsoe BS, Eakin EG. Physical activity and/or dietary interventions in breast cancer survivors: a systematic review of the maintenance of outcomes. J Cancer Surviv. 2013;7(1):74–82.
    1. Short CE, James EL, Stacey F, Plotnikoff RC. A qualitative synthesis of trials promoting physical activity behaviour change among post-treatment breast cancer survivors. J Cancer Surviv. 2013;7(4):570–581.
    1. Demark-Wahnefried W, Morey MC, Sloane R, Snyder DC, Miller PE, Hartman TJ, Cohen HJ. Reach out to enhance wellness home-based diet-exercise intervention promotes reproducible and sustainable long-term improvements in health behaviors, body weight, and physical functioning in older, overweight/obese cancer survivors. J Clin Oncol. 2012;30(19):2354–2361.
    1. Ritvo P, Obadia M, Santa Mina D, Alibhai S, Sabiston C, Oh P, Campbell K, McCready D, Auger L, Jones JM. Smartphone-enabled health coaching intervention (iMOVE) to promote long-term maintenance of physical activity in breast Cancer survivors: protocol for a feasibility pilot randomized controlled trial. JMIR Res Protoc. 2017;6(8):e165.
    1. Moore SC, Lee IM, Weiderpass E, Campbell PT, Sampson JN, Kitahara CM, Keadle SK, Arem H, Berrington de Gonzalez A, Hartge P et al: Association of Leisure-Time Physical Activity with Risk of 26 types of Cancer in 1.44 million adults. JAMA Intern Med 2016, 176(6):816–825.
    1. Schrack J, Gresham G, Wanigatunga AA. Understanding physical activity in Cancer patients and survivors: new methodology, new challenges, and new Opportunitites. Cold Spring Harb Mol Case Stud. 2018;3(4):a001933.
    1. Teixeira PJ, Carraca EV, Markland D, Silva MN, Ryan RM. Exercise, physical activity, and self-determination theory: a systematic review. Int J Behav Nutr Phys Act. 2012;9:78.
    1. Ryan RM, Williams GC, Patrick H, Deci EL. Self-determination theory and physical activity: the dynamics of motivation in development and wellness. Hell J Psychol. 2009;6(2):107–124.
    1. Milne HM, Wallman KE, Guilfoyle A, Gordon S, Corneya KS. Self-determination theory and physical activity among breast cancer survivors. J Sport Exerc Psychol. 2008;30(1):23–38.
    1. Wilson PM, Blanchard CM, Nehl E, Baker F. Predicting physical activity and outcome expectations in cancer survivors: an application of self-determination theory. Psychooncology. 2006;15(7):567–578.
    1. Deci EL, Ryan RM. Handbook of Slef-Determination Research. Rochester, NY: University of Rochester Press; 2002.
    1. McNeely ML, Campbell KL, Rowe BH, Klassen TP, Mackey JR, Courneya KS. Effects of exercise on breast cancer patients and survivors: a systematic review and meta-analysis. Cmaj. 2006;175(1):34–41.
    1. Fong DY, Ho JW, Hui BP, Lee AM, Macfarlane DJ, Leung SS, Cerin E, Chan WY, Leung IP, Lam SH, et al. Physical activity for cancer survivors: meta-analysis of randomised controlled trials. BMJ. 2012;344:e70.
    1. Kendall AR, Mahue-Giangreco M, Carpenter CL, Ganz PA, Bernstein L. Influence of exercise activity on quality of life in long-term breast cancer survivors. Qual Life Res. 2005;14(2):361–371.
    1. Harder H, Parlour L, Jenkins V. Randomised controlled trials of yoga interventions for women with breast cancer: a systematic literature review. Support Care Cancer. 2012;20(12):3055–3064.
    1. Barber FD. Social support and physical activity engagement by cancer survivors. Clin J Oncol Nurs. 2012;16(3):E84–E98.
    1. Ungar N, Wiskemann J, Weibmann M, Knoll A, Steindorf K, Sieverding M: Social support and social control in the context of cancer patients' exercise: a pilot study. Health Pyschol Open 2016:1–11.
    1. Rogers LQ, Markwell S, Hopkins-Price P, Vicari S, Courneya KS, Hoelzer K, Verhulst S. Reduced barriers mediated physical activity maintenance among breast cancer survivors. J Sport Exerc Psychol. 2011;33(2):235–254.
    1. McAuley E, Konopack JF, Morris KS, Motl RW, Hu L, Doerksen SE, Rosengren K: Physical activity and functional limitations in older women: influence of self-efficacy. J Gerontol B Psychol Sci Soc Sci 2006, 61(5):P270–P277.
    1. Lapier TK, Cleary K, Kidd J. Exercise self-efficacy habitual physical activity, and fear of falling in patients with coronary heart disease. Cardiopulm Phys Ther J. 2009;20(4):5–11.
    1. Phillips SM, McAuley E. Physical activity and quality of life in breast cancer survivors: the role of self-efficacy and health status. Psychooncology. 2014;23(1):27–34.
    1. Streiner D, Geddes J. Intention to treat analysis in clinical trials when there are missing data. Evid Based Ment Health. 2001;4(3):70–71.

Source: PubMed

3
订阅