Systematic Review of Appropriate Robotic Intervention for Gait Function in Subacute Stroke Patients

Ji-Eun Cho, Jun Sang Yoo, Kyoung Eun Kim, Sung Tae Cho, Woo Seok Jang, Ki Hun Cho, Wan-Hee Lee, Ji-Eun Cho, Jun Sang Yoo, Kyoung Eun Kim, Sung Tae Cho, Woo Seok Jang, Ki Hun Cho, Wan-Hee Lee

Abstract

The purpose of this study was to critically evaluate the effects of robot-assisted gait training (RAGT) on gait-related function in patients with acute/subacute stroke. We conducted a systematic review of randomized controlled trials published between May 2012 and April 2016. This search included 334 articles (Cochrane, 51 articles; Embase, 175 articles; PubMed, 108 articles). Based on the inclusion and exclusion criteria, 7 studies were selected for this review. We performed a quality evaluation using the PEDro scale. In this review, 3 studies used an exoskeletal robot, and 4 studies used an end-effector robot as interventions. As a result, RAGT was found to be effective in improving walking ability in subacute stroke patients. Significant improvements in gait speed, functional ambulatory category, and Rivermead mobility index were found with RAGT compared with conventional physical therapy (p < 0.05). Therefore, aggressive weight support and gait training at an early stage using a robotic device are helpful, and robotic intervention should be applied according to the patient's functional level and onset time of stroke.

Figures

Figure 1
Figure 1
Flowchart search strategy. RCT: randomized controlled trial.

References

    1. Brønnum-Hansen H., Davidsen M., Thorvaldsen P. Long-term survival and causes of death after stroke. Stroke. 2001;32(9):2131–2136. doi: 10.1161/hs0901.094253.
    1. Cai L. L., Fong A. J., Otoshi C. K., et al. Implications of assist-as-needed robotic step training after a complete spinal cord injury on intrinsic strategies of motor learning. The Journal of Neuroscience. 2006;26(41):10564–10568. doi: 10.1523/jneurosci.2266-06.2006.
    1. Chang W. H., Kim M. S., Huh J. P., Lee P. K. W., Kim Y.-H. Effects of robot-assisted gait training on cardiopulmonary fitness in subacute stroke patients: A randomized controlled study. Neurorehabilitation and Neural Repair. 2012;26(4):318–324. doi: 10.1177/1545968311408916.
    1. Dragin A. S., Konstantinović L. M., Veg A., Schwirtlich L. B. Gait training of poststroke patients assisted by the Walkaround (body postural support) International Journal of Rehabilitation Research. 2014;37(1):22–28. doi: 10.1097/MRR.0b013e328363ba30.
    1. Duschau-Wicke A., Caprez A., Riener R. Patient-cooperative control increases active participation of individuals with SCI during robot-aided gait training. Journal of NeuroEngineering and Rehabilitation. 2010;7(1, article no. 43) doi: 10.1186/1743-0003-7-43.
    1. Hesse S. Treadmill training with partial body weight support after stroke: a review. NeuroRehabilitation. 2008;23(1):55–65.
    1. Hidler J., Nichols D., Pelliccio M., et al. Multicenter randomized clinical trial evaluating the effectiveness of the Lokomat in subacute stroke. Neurorehabilitation and Neural Repair. 2009;23(1):5–13. doi: 10.1177/1545968308326632.
    1. Hsueh I.-P., Wang C.-H., Sheu C.-F., Hsieh C.-L. Comparison of psychometric properties of three mobility measures for patients with stroke. Stroke. 2003;34(7):1741–1745. doi: 10.1161/01.STR.0000075295.45185.D4.
    1. Horstman A. M., Gerrits K. H., Beltman M. J., Koppe P. A., Janssen T. W., de Haan A. Intrinsic Properties of the Knee Extensor Muscles After Subacute Stroke. Archives of Physical Medicine and Rehabilitation. 2010;91(1):123–128. doi: 10.1016/j.apmr.2009.09.008.
    1. Hesse S., Waldner A., Tomelleri C. Innovative gait robot for the repetitive practice of floor walking and stair climbing up and down in stroke patients. Journal of NeuroEngineering and Rehabilitation. 2010;7(1, article 30) doi: 10.1186/1743-0003-7-30.
    1. Hesse S., Werner C., Uhlenbrock D., Frankenberg S. V., Bardeleben A., Brandl-Hesse B. An Electromechanical Gait Trainer for Restoration of Gait in Hemiparetic Stroke Patients: Preliminary Results. Neurorehabilitation and Neural Repair. 2001;15(1):39–50. doi: 10.1177/154596830101500106.
    1. Jorgensen H. S., Nakayama H., Raaschou H. O., Olsen T. S. Recovery of walking function in stroke patients: the Copenhagen stroke study. Archives of Physical Medicine and Rehabilitation. 1995;76(1):27–32. doi: 10.1016/S0003-9993(95)80038-7.
    1. Maulden S. A., Gassaway J., Horn S. D., Smout R. J., DeJong G. Timing of initiation of rehabilitation after stroke. Archives of Physical Medicine and Rehabilitation. 2005;86(12):S34–S40. doi: 10.1016/j.apmr.2005.08.119.
    1. Swinnen E., Beckwée D., Meeusen R., Baeyens J.-P., Kerckhofs E. Does robot-assisted gait rehabilitation improve balance in stroke patients? a systematic review. Topics in Stroke Rehabilitation. 2014;21(2):87–100. doi: 10.1310/tsr2102-87.
    1. Hesse S., Tomelleri C., Bardeleben A., Werner C., Waldner A. Robot-assisted practice of gait and stair climbing in nonambulatory stroke patients. Journal of Rehabilitation Research and Development . 2012;49(4):613–622. doi: 10.1682/JRRD.2011.08.0142.
    1. Morone G., Iosa M., Bragoni M., et al. Who may have durable benefit from robotic gait training?: A 2-year follow-up randomized controlled trial in patients with subacute stroke. Stroke. 2012;43(4):1140–1142. doi: 10.1161/STROKEAHA.111.638148.
    1. Van Nunen M. P. M., Gerrits K. H. L., Konijnenbelt M., Janssen T. W. J., De Haan A. Recovery of walking ability using a robotic device in subacute stroke patients: A randomized controlled study. Disability and Rehabilitation: Assistive Technology. 2015;10(2):141–148. doi: 10.3109/17483107.2013.873489.
    1. Ochi M., Wada F., Saeki S., Hachisuka K. Gait training in subacute non-ambulatory stroke patients using a full weight-bearing gait-assistance robot: A prospective, randomized, open, blinded-endpoint trial. Journal of the Neurological Sciences. 2015;353(1-2):130–136. doi: 10.1016/j.jns.2015.04.033.
    1. Taveggia G., Borboni A., Mulé C., Villafañe J. H., Negrini S. Conflicting results of robot-assisted versus usual gait training during postacute rehabilitation of stroke patients: A randomized clinical trial. International Journal of Rehabilitation Research. 2016;39(1):29–35. doi: 10.1097/MRR.0000000000000137.
    1. Cohen J. Statistical Power Analysis for the Behavioral Sciences. 2nd. Hillsdale, Mich, USA: Routledge; 1988. (Lawrence Erlbaum Associate).
    1. Belda-Lois J.-M., Mena-del Horno S., Bermejo-Bosch I., et al. Rehabilitation of gait after stroke: a review towards a top-down approach. Journal of NeuroEngineering and Rehabilitation. 2011;8(1, article 66) doi: 10.1186/1743-0003-8-66.
    1. Masiero S., Poli P., Rosati G., et al. The value of robotic systems in stroke rehabilitation. Expert Review of Medical Devices. 2014;11(2):187–198. doi: 10.1586/17434440.2014.882766.
    1. Wolpert D. M., Diedrichsen J., Flanagan J. R. Principles of sensorimotor learning. Nature Reviews Neuroscience. 2011;12(12):739–751. doi: 10.1038/nrn3112.
    1. Wang S., Meijneke C., Van Der Kooij H. Modeling, design, and optimization of Mindwalker series elastic joint. Proceedings of the 2013 IEEE 13th International Conference on Rehabilitation Robotics, ICORR 2013; June 2013; USA.
    1. Iosa M., Morone G., Bragoni M., et al. Driving electromechanically assisted gait trainer for people with stroke. Journal of Rehabilitation Research and Development . 2011;48(2):135–146. doi: 10.1682/JRRD.2010.04.0069.
    1. Hesse S., Mehrholz J., Werner C. Robot-assisted upper and lower limb rehabilitation after stroke: walking and arm/hand function. Deutsches Arzteblatt International. 2008;105(18):330–336.
    1. Mehrholz J., Elsner B., Werner C., Kugler J., Pohl M. Electromechanical-assisted training for walking after stroke. Cochrane Database of Systematic Reviews. 2017;5:p. CD006185.
    1. Morone G., Bragoni M., Iosa M., et al. Who may benefit from robotic-assisted gait training?: A randomized clinical trial in patients with subacute stroke. Neurorehabilitation and Neural Repair. 2011;25(7):636–644. doi: 10.1177/1545968311401034.
    1. Lefeber N., Swinnen E., Kerckhofs E. The immediate effects of robot-assistance on energy consumption and cardiorespiratory load during walking compared to walking without robot-assistance: a systematic review. Disability and Rehabilitation: Assistive Technology. 2017;12(7):657–671. doi: 10.1080/17483107.2016.1235620.
    1. Ryan A. S., Dobrovolny C. L., Silver K. H., Smith G. V., Macko R. F. Cardiovascular fitness after stroke: role of muscle mass and gait deficit severity. Journal of Stroke and Cerebrovascular Diseases. 2000;9(4):185–191. doi: 10.1053/jscd.2000.7237.
    1. Morone G., Paolucci S., Cherubini A., et al. Robot-assisted gait training for stroke patients: Current state of the art and perspectives of robotics. Neuropsychiatric Disease and Treatment. 2017;13:1303–1311. doi: 10.2147/NDT.S114102.
    1. Iosa M., Morone G., Fusco A., et al. Seven capital devices for the future of stroke rehabilitation. Stroke Research and Treatment. 2012;2012:9. doi: 10.1155/2012/187965.187965
    1. Pilleri M., Weis L., Zabeo L., et al. Overground robot assisted gait trainer for the treatment of drug-resistant freezing of gait in Parkinson disease. Journal of the Neurological Sciences. 2015;355(1-2):75–78. doi: 10.1016/j.jns.2015.05.023.
    1. Pohl M., Warner C., Holzgraefe M., et al. Repetitive locomotor training and physiotherapy improve walking and basic activities of daily living after stroke: a single-blind, randomised multicentre trial (DEutsche GAngtrainerStudie, DEGAS) Clinical Rehabilitation. 2007;21(1):17–27. doi: 10.1177/0269215506071281.
    1. Patrizia P., Giovanni M., Rosati G., Masiero S. Robotic technologies and rehabilitation: new tools for stroke patients' therapy. BioMed Research International. 2013;2013:8. doi: 10.1155/2013/153872.153872
    1. Rao N., Zielke D., Keller S., et al. Pregait balance rehabilitation in acute stroke patients. International Journal of Rehabilitation Research. 2013;36(2):112–117. doi: 10.1097/MRR.0b013e328359a2fa.
    1. Mehrholz J., Werner C., Kugler J., Pohl M. Electromechanical-assisted training for walking after stroke. Cochrane Database of Systematic Reviews (Online) 2007;(4):p. CD006185.
    1. Mehrholz J., Elsner B., Werner C., Kugler J., Pohl M. Electromechanical-assisted training for walking after stroke. Cochrane Database of Systematic Reviews. 2013;7:p. CD006185.
    1. Roerdink M., Beek P. J. Understanding inconsistent step-length asymmetries across hemiplegic stroke patients: Impairments and compensatory gait. Neurorehabilitation and Neural Repair. 2011;25(3):253–258. doi: 10.1177/1545968310380687.
    1. Mehrholz J., Elsner B., Werner C., Kugler J., Pohl M. Electromechanical-assisted training for walking after stroke updated evidence. Stroke. 2013;44(10):e127–e128. doi: 10.1161/STROKEAHA.113.003061.

Source: PubMed

3
订阅