Does Low-Magnitude High-Frequency Vibration (LMHFV) Worth for Clinical Trial on Dental Implant? A Systematic Review and Meta-Analysis on Animal Studies

Xinjian Ye, Ying Gu, Yijing Bai, Siqi Xia, Yujia Zhang, Yuwei Lou, Yuchi Zhu, Yuwei Dai, James Kit-Hon Tsoi, Shuhua Wang, Xinjian Ye, Ying Gu, Yijing Bai, Siqi Xia, Yujia Zhang, Yuwei Lou, Yuchi Zhu, Yuwei Dai, James Kit-Hon Tsoi, Shuhua Wang

Abstract

Being as a non-pharmacological medical intervention, low-magnitude high-frequency vibration (LMHFV) has shown a positive effect on bone induction and remodeling for various muscle diseases in animal studies, among which dental implants osteointegration were reported to be improved as well. However, whether LMHFV can be clinically used in dental implant is still unknown. In this study, efficacy, parameters and side effects of LMHFV were analyzed via data before 15th July 2020, collecting from MEDLINE/PubMed, Embase, Ovid and Cochrane Library databases. In the screened 1,742 abstracts and 45 articles, 15 animal studies involving 972 implants were included. SYRCLE's tool was performed to assess the possible risk of bias for each study. The GRADE approach was applied to evaluate the quality of evidence. Random effects meta-analysis detected statistically significant in total BIC (P < 0.0001) and BV/TV (P = 0.001) upon loading LMHFV on implants. To conclude, LMHFV played an active role on BIC and BV/TV data according to the GRADE analysis results (medium and low quality of evidence). This might illustrate LMHFV to be a worthy way in improving osseointegration clinically, especially for osteoporosis. Systematic Review Registration: https://www.crd.york.ac.uk/PROSPERO, identifier: NCT02612389.

Keywords: dental implant; low-magnitude high-frequency vibration; osseointegration; osteoporosis; systematic review and meta-analysis.

Conflict of interest statement

The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Copyright © 2021 Ye, Gu, Bai, Xia, Zhang, Lou, Zhu, Dai, Tsoi and Wang.

Figures

Figure 1
Figure 1
PRISMA flowchart of the screening process.
Figure 2
Figure 2
Bubble chart of frequencies (Hz), magnitudes (g/μm), and duration (min) of vibration treatment used in the studies. Green bubbles indicate more than two-thirds positive measurements, among which two test data were statistically significant (P < 0.05); Yellow bubbles indicate more than half positive measurements; Red bubbles indicate more than half negative measurements. Area of circle represents LMHFV loading duration. aAn average of the composite vibration; bconverted from other units. (A) OVX-WBV group; (B) non-OVX-WBV group; (C) non-OVX-DLV group.
Figure 3
Figure 3
Meta-analysis. BIC Standardized mean differences of LMHFV treated compared to sham or untreated animals.
Figure 4
Figure 4
Meta-analysis. BV/TV Standardized mean differences of LMHFV treated compared to sham or untreated animals.
Figure 5
Figure 5
Results of SYRCLE's RoB tool in included studies. (A) Representative summary table for the risk of bias assessment; (B) Representative summary for risk of bias analysis across studies.

References

    1. Aghaloo T., Pi-Anfruns J., Moshaverinia A., Sim D., Grogan T., Hadaya D. (2019). The effects of systemic diseases and medications on implant osseointegration: a systematic review. Int. J. Oral Maxillofac. Implants 34, s35–s49. 10.11607/jomi.19suppl.g3
    1. Akca K., Sarac E., Baysal U., Fanuscu M., Chang T. L., Cehreli M. (2007). Micro-morphologic changes around biophysically-stimulated titanium implants in ovariectomized rats. Head Face Med. 3:28. 10.1186/1746-160x-3-28
    1. Albelasy E. H., Hamama H. H., Tsoi J. K. H., Mahmoud S. H. (2020). Fracture resistance of CAD/CAM occlusal veneers: a systematic review of laboratory studies. J. Mech. Behav. Biomed. Mater. 110:103948. 10.1016/j.jmbbm.2020.103948
    1. Armas L. A., Recker R. R. (2012). Pathophysiology of osteoporosis: new mechanistic insights. Endocrinol. Metab. Clin. North Am. 41, 475–486. 10.1016/j.ecl.2012.04.006
    1. Bacabac R. G., Smit T. H., Van Loon J. J., Doulabi B. Z., Helder M., Klein-Nulend J. (2006). Bone cell responses to high-frequency vibration stress: does the nucleus oscillate within the cytoplasm? FASEB J. 20, 858–864. 10.1096/
    1. Balshem H., Helfand M., Schünemann H. J., Oxman A. D., Kunz R., Brozek J., et al. . (2011). GRADE guidelines: 3. Rating the quality of evidence. J. Clin. Epidemiol. 64, 401–406. 10.1016/j.jclinepi.2010.07.015
    1. Birmingham E., Kreipke T. C., Dolan E. B., Coughlin T. R., Owens P., McNamara L. M., et al. . (2015). Mechanical stimulation of bone marrow in situ induces bone formation in trabecular explants. Ann. Biomed. Eng. 43, 1036–1050. 10.1007/s10439-014-1135-0
    1. Branemark R., Berlin O., Hagberg K., Bergh P., Gunterberg B., Rydevik B. (2014). A novel osseointegrated percutaneous prosthetic system for the treatment of patients with transfemoral amputation: a prospective study of 51 patients. Bone Joint J. 96B, 106–113. 10.1302/0301-620X.96B1.31905
    1. Castellanos-Cosano L., Rodriguez-Perez A., Spinato S., Wainwright M., Machuca-Portillo G., Serrera-Figallo M. A., et al. . (2019). Descriptive retrospective study analyzing relevant factors related to dental implant failure. Med. Oral Patol. Oral Cir. Bucal. 24, e726–e738. 10.4317/medoral.23082
    1. Chatterjee M., Hatori K., Duyck J., Sasaki K., Naert I., Vandamme K. (2014). High-frequency loading positively impacts titanium implant osseointegration in impaired bone. Osteoporos. Int. 26, 281–290. 10.1007/s00198-014-2824-0
    1. Chen B., Li Y., Xie D., Yang X. (2012). Low-magnitude high-frequency loading via whole body vibration enhances bone-implant osseointegration in ovariectomized rats. J. Orthop. Res. 30, 733–739. 10.1002/jor.22004
    1. Chen B., Lin T., Yang X., Li Y., Xie D., Zheng W., et al. . (2016). Low-magnitude, high-frequency vibration promotes the adhesion and the osteogenic differentiation of bone marrow-derived mesenchymal stem cells cultured on a hydroxyapatite-coated surface: the direct role of Wnt/β-catenin signaling pathway activation. Int. J. Mol. Med. 38, 1531–1540. 10.3892/ijmm.2016.2757
    1. Chen J., Cai M., Yang J., Aldhohrah T., Wang Y. (2019). Immediate versus early or conventional loading dental implants with fixed prostheses: a systematic review and meta-analysis of randomized controlled clinical trials. J. Prosthet. Dent. 122, 516–536. 10.1016/j.prosdent.2019.05.013
    1. Cochran D. L., Jackson J. M., Bernard J. P., ten Bruggenkate C. M., Buser D., Taylor T. D., et al. . (2011). A 5-year prospective multicenter study of early loaded titanium implants with a sandblasted and acid-etched surface. Int. J. Oral Maxillofac. Implants 26, 1324–1332.
    1. Corbiere T. F., Koh T. J. (2020). Local low-intensity vibration improves healing of muscle injury in mice. Physiol. Rep. 8:e14356. 10.14814/phy2.14356
    1. Du N., Chen M., Shen Z., Li S., Chen P., Khadaroo P. A., et al. . (2020). Comparison of quality of life and nutritional status of between Roux-en-Y and Billroth-I reconstruction after distal gastrectomy: a systematic review and meta-analysis. Nutr. Cancer 72, 849–857. 10.1080/01635581.2019.1656262
    1. Faggion C. M., Jr. (2015). Animal research as a basis for clinical trials. Eur. J. Oral Sci. 123, 61–64. 10.1111/eos.12175
    1. Fan X., Rahnert J. A., Murphy T. C., Nanes M. S., Greenfield E. M., Rubin J. (2006). Response to mechanical strain in an immortalized pre-osteoblast cell is dependent on ERK1/2. J. Cell Physiol. 207, 454–460. 10.1002/jcp.20581
    1. Friberg B., Ekestubbe A., Mellström D., Sennerby L. (2001). Brånemark implants and osteoporosis: a clinical exploratory study. Clin. Implant Dent. Relat. Res. 3, 50–56. 10.1111/j.1708-8208.2001.tb00128.x
    1. Gao J., Gong H., Huang X., Zhang R., Ma R., Zhu D. (2016). Multi-level assessment of fracture calluses in rats subjected to low-magnitude high-frequency vibration with different rest periods. Ann. Biomed. Eng. 44, 2489–2504. 10.1007/s10439-015-1532-z
    1. Guyatt G. H., Oxman A. D., Vist G. E., Kunz R., Falck-Ytter Y., Alonso-Coello P., et al. . (2008). GRADE: an emerging consensus on rating quality of evidence and strength of recommendations. BMJ 336, 924–926. 10.1136/
    1. Hall E. D., Traystman R. J. (2009). Role of animal studies in the design of clinical trials. Front. Neurol. Neurosci. 25, 10–33. 10.1159/000209470
    1. Holguin N., Muir J., Rubin C., Judex S. (2009). Short applications of very low-magnitude vibrations attenuate expansion of the intervertebral disc during extended bed rest. Spine J. 9, 470–477. 10.1016/j.spinee.2009.02.009
    1. Hooijmans C. R., Rovers M. M., de Vries R. B., Leenaars M., Ritskes-Hoitinga M., Langendam M. W. (2014). SYRCLE's risk of bias tool for animal studies. BMC Med. Res. Methodol. 14:43. 10.1186/1471-2288-14-43
    1. Jiang N., Xia W. (2018). Assessment of bone quality in patients with diabetes mellitus. Osteoporos Int. 29, 1721–1736. 10.1007/s00198-018-4532-7
    1. Jing D., Tong S., Zhai M., Li X., Cai J., Wu Y., et al. . (2015). Effect of low-level mechanical vibration on osteogenesis and osseointegration of porous titanium implants in the repair of long bone defects. Sci. Rep. 5:17134. 10.1038/srep17134
    1. Jing D., Yan Z., Cai J., Tong S., Li X., Guo Z., et al. . (2018). Low-1 level mechanical vibration improves bone microstructure, tissue mechanical properties and porous titanium implant osseointegration by promoting anabolic response in type 1 diabetic rabbits. Bone 106, 11–21. 10.1016/j.bone.2017.10.001
    1. Judex S., Lei X., Han D., Rubin C. (2007). Low-magnitude mechanical signals that stimulate bone formation in the ovariectomized rat are dependent on the applied frequency but not on the strain magnitude. J. Biomech. 40, 1333–1339. 10.1016/j.jbiomech.2006.05.014
    1. Lau E., Al-Dujaili S., Guenther A., Liu D., Wang L., You L. (2010). Effect of low-magnitude, high-frequency vibration on osteocytes in the regulation of osteoclasts. Bone 46, 1508–1515. 10.1016/j.bone.2010.02.031
    1. Leenaars C., Stafleu F., de Jong D., van Berlo M., Geurts T., Coenen-de Roo T., et al. . (2020). A systematic review comparing experimental design of animal and human methotrexate efficacy studies for rheumatoid arthritis: lessons for the translational value of animal studies. Animals 10:1047. 10.3390/ani10061047
    1. Leung K. S., Li C. Y., Tse Y. K., Choy T. K., Leung P. C., Hung V. W., et al. . (2014). Effects of 18-month low-magnitude high-frequency vibration on fall rate and fracture risks in 710 community elderly–a cluster-randomized controlled trial. Osteoporos Int. 25, 1785–1795. 10.1007/s00198-014-2693-6
    1. Li M., Wu W., Tan L., Mu D., Zhu D., Wang J., et al. . (2015). Low-magnitude mechanical vibration regulates expression of osteogenic proteins in ovariectomized rats. Biochem. Biophys. Res. Commun. 465, 344–348. 10.1016/j.bbrc.2015.07.154
    1. Liang Y. Q., Qi M. C., Xu J., Xu J., Liu H. W., Dong W., et al. . (2014). Low-magnitude high-frequency loading, by whole-body vibration, accelerates early implant osseointegration in ovariectomized rats. Mol. Med. Rep. 10, 2835–2842. 10.3892/mmr.2014.2597
    1. Liu X., Chen S., Tsoi J. K. H., Matinlinna J. P. (2017). Binary titanium alloys as dental implant materials-a review. Regen. Biomater. 4, 315–323. 10.1093/rb/rbx027
    1. Mak I. W., Evaniew N., Ghert M. (2014). Lost in translation: animal models and clinical trials in cancer treatment. Am. J. Transl. Res. 6, 114–118.
    1. Manzano G., Herrero L. R., Montero J. (2014). Comparison of clinical performance of zirconia implants and titanium implants in animal models: a systematic review. Int. J. Oral Maxillofac. Implants 29, 311–320. 10.11607/jomi.2817
    1. Marín-Cascales E., Alcaraz P. E., Ramos-Campo D. J., Martinez-Rodriguez A., Chung L. H., Rubio-Arias J. (2018). Whole-body vibration training and bone health in postmenopausal women: a systematic review and meta-analysis. Medicine 97:e11918. 10.1097/MD.0000000000011918
    1. Moher D., Shamseer L., Clarke M., Ghersi D., Liberati A., Petticrew M., et al. . (2015). Preferred reporting items for systematic review and meta-analysis protocols (PRISMA-P) 2015 statement. Syst. Rev. 4:1. 10.1186/2046-4053-4-1
    1. Ogawa T., Possemiers T., Zhang X., Naert I., Chaudhari A., Sasaki K., et al. . (2011a). Influence of whole-body vibration time on peri-implant bone healing: a histomorphometrical animal study. J. Clin. Periodontol. 38, 180–185. 10.1111/j.1600-051X.2010.01637.x
    1. Ogawa T., Vandamme K., Zhang X., Naert I., Possemiers T., Chaudhari A., et al. . (2014). Stimulation of titanium implant osseointegration through high-frequency vibration loading is enhanced when applied at high acceleration. Calcif. Tissue Int. 95, 467–475. 10.1007/s00223-014-9896-x
    1. Ogawa T., Zhang X., Naert I., Vermaelen P., Deroose C. M., Sasaki K., et al. . (2011b). The effect of whole-body vibration on peri-implant bone healing in rats. Clin. Oral Implants Res. 22, 302–307. 10.1111/j.1600-0501.2010.02020.x
    1. Ota T., Chiba M., Hayashi H. (2016). Vibrational stimulation induces osteoblast differentiation and the upregulation of osteogenic gene expression in vitro. Cytotechnology 68, 2287–2299. 10.1007/s10616-016-0023-x
    1. Pichler K., Loreto C., Leonardi R., Reuber T., Weinberg A. M., Musumeci G. (2013). RANKL is downregulated in bone cells by physical activity (treadmill and vibration stimulation training) in rat with glucocorticoid-induced osteoporosis. Histol. Histopathol. 28, 1185–1196. 10.14670/HH-28.1185
    1. Pound P., Ebrahim S., Sandercock P., Bracken M. B., Roberts I. (2004). Where is the evidence that animal research benefits humans? BMJ 328, 514–517. 10.1136/bmj.328.7438.514
    1. Pound P., Ritskes-Hoitinga M. (2020). Can prospective systematic reviews of animal studies improve clinical translation? J. Transl. Med. 18:15. 10.1186/s12967-019-02205-x
    1. Romanos G. E. (2004). Present status of immediate loading of oral implants. J. Oral Implantol. 30, 189–197. 10.1563/1548-1336(2004)30<189:PSOILO>;2
    1. Rubin C., Turner A. S., Bain S., Mallinckrodt C., McLeod K. (2001). Anabolism. Low mechanical signals strengthen long bones. Nature 412, 603–604. 10.1038/35088122
    1. Rubin J., Murphy T., Nanes M. S., Fan X. (2000). Mechanical strain inhibits expression of osteoclast differentiation factor by murine stromal cells. Am. J. Physiol. Cell Physiol. 278, C1126–1132. 10.1152/ajpcell.2000.278.6.C1126
    1. Rucci N., Rufo A., Alamanou M., Teti A. (2007). Modeled microgravity stimulates osteoclastogenesis and bone resorption by increasing osteoblast RANKL/OPG ratio. J. Cell Biochem. 100, 464–473. 10.1002/jcb.21059
    1. Ruppert D. S., Harrysson O., Marcellin-Little D. J., Bollenbecker S., Weinhold P. S. (2019). Osteogenic benefits of low-intensity pulsed ultrasound and vibration in a rodent osseointegration model. J. Musculoskelet. Neuronal. Interact. 19, 150–158.
    1. Ruppert D. S., Harrysson O. L. A., Marcellin-Little D. J., Dahners L. E., Weinhold P. S. (2018). Improved osseointegration with as-built electron beam melted textured implants and improved peri-implant bone volume with whole body vibration. Med. Eng. Phys. 58, 64–71. 10.1016/j.medengphy.2018.05.003
    1. Sanz-Sánchez I., Sanz-Martín I., Figuero E., Sanz M. (2015). Clinical efficacy of immediate implant loading protocols compared to conventional loading depending on the type of the restoration: a systematic review. Clin. Oral Implants Res. 26, 964–982. 10.1111/clr.12428
    1. Savoldi F., Papoutsi A., Dianiskova S., Dalessandri D., Bonetti S., Tsoi J. K. H., et al. . (2018a). Resistance to sliding in orthodontics: misconception or method error? A systematic review and a proposal of a test protocol. Kor. J. Orthod. 48, 268–280. 10.4041/kjod.2018.48.4.268
    1. Savoldi F., Tsoi J. K. H., Paganelli C., Matinlinna J. P. (2017). Biomechanical behaviour of craniofacial sutures during distraction: an evaluation all over the entire craniofacial skeleton. Dent. Mater. 33, e290–e300. 10.1016/j.dental.2017.04.025
    1. Savoldi F., Tsoi J. K. H., Paganelli C., Matinlinna J. P. (2018b). The biomechanical properties of human craniofacial sutures and relevant variables in sutural distraction osteogenesis: a critical review. Tissue Eng. Part B Rev. 24, 25–36. 10.1089/ten.teb.2017.0116
    1. Shamseer L., Moher D., Clarke M., Ghersi D., Liberati A., Petticrew M., et al. . (2015). Preferred reporting items for systematic review and meta-analysis protocols (PRISMA-P) 2015: elaboration and explanation. BMJ 350:g7647. 10.1136/bmj.g7647
    1. Shi H. F., Cheung W. H., Qin L., Leung A. H., Leung K. S. (2010). Low-magnitude high-frequency vibration treatment augments fracture healing in ovariectomy-induced osteoporotic bone. Bone 46, 1299–1305. 10.1016/j.bone.2009.11.028
    1. Shibamoto A., Ogawa T., Duyck J., Vandamme K., Naert I., Sasaki K. (2018). Effect of high-frequency loading and parathyroid hormone administration on peri-implant bone healing and osseointegration. Int. J. Oral Sci. 10:6. 10.1038/s41368-018-0009-y
    1. Shih T. T., Liu H. C., Chang C. J., Wei S. Y., Shen L. C., Yang P. C. (2004). Correlation of MR lumbar spine bone marrow perfusion with bone mineral density in female subjects. Radiology 233, 121–128. 10.1148/radiol.2331031509
    1. Simmons C. A., Valiquette N., Pilliar R. M. (1999). Osseointegration of sintered porous-surfaced and plasma spray-coated implants: an animal model study of early postimplantation healing response and mechanical stability. J. Biomed. Mater. Res. 47, 127–138. 10.1002/(SICI)1097-4636(199911)47:2<127::AID-JBM3>;2-C
    1. Suenaga H., Yokoyama M., Yamaguchi K., Sasaki K. (2012). Bone metabolism of residual ridge beneath the denture base of an RPD observed using NaF-PET/CT. J. Prosthodont. Res. 56, 42–46. 10.1016/j.jpor.2011.04.002
    1. Thompson W. R., Keller B. V., Davis M. L., Dahners L. E., Weinhold P. S. (2015). Low-magnitude, high-frequency vibration fails to accelerate ligament healing but stimulates collagen synthesis in the achilles tendon. Orthop. J. Sports Med. 3:2325967115585783. 10.1177/2325967115585783
    1. Torvinen S., Kannus P., Sievanen H., Jarvinen T. A., Pasanen M., Kontulainen S., et al. . (2003). Effect of 8-month vertical whole body vibration on bone, muscle performance, and body balance: a randomized controlled study. J. Bone Miner Res. 18, 876–884. 10.1359/jbmr.2003.18.5.876
    1. Tuminelli F. J., Walter L. R., Neugarten J., Bedrossian E. (2017). Immediate loading of zygomatic implants: a systematic review of implant survival, prosthesis survival and potential complications. Eur. J. Oral Implantol. 10(Suppl. 1), 79–87.
    1. Umemura Y., Sogo N., Honda A. (2002). Effects of intervals between jumps or bouts on osteogenic response to loading. J. Appl. Physiol. 93, 1345–1348. 10.1152/japplphysiol.00358.2002
    1. Van Norman G. A. (2020). Limitations of animal studies for predicting toxicity in clinical trials: part 2: potential alternatives to the use of animals in preclinical trials. JACC Basic Transl. Sci. 5, 387–397. 10.1016/j.jacbts.2020.03.010
    1. Wang S., Liu Y., Tang Y., Zhao W., Li J., Yang Y., et al. . (2016). Direct radial LMHF microvibration induced bone formation and promoted implant osseointegration. Clin. Implant Dent. Relat. Res. 18, 401–409. 10.1111/cid.12220
    1. Wang S., Ogawa T., Zheng S., Miyashita M., Tenkumo T., Gu Z., et al. . (2018). The effect of low-magnitude high-frequency loading on peri-implant bone healing and implant osseointegration in Beagle dogs. J. Prosthodont. Res. 62, 497–502. 10.1016/j.jpor.2018.07.004
    1. Wong R. M. Y., Ho W. T., Tang N., Tso C. Y., Ng W. K. R., Chow S. K., et al. . (2020). A study protocol for a randomized controlled trial evaluating vibration therapy as an intervention for postural training and fall prevention after distal radius fracture in elderly patients. Trials 21:95. 10.1186/s13063-019-4013-0
    1. Xie P., Tang Z., Qing F., Chen X., Zhu X., Fan Y., et al. . (2016). Bone mineral density, microarchitectural and mechanical alterations of osteoporotic rat bone under long-term whole-body vibration therapy. J. Mech. Behav. Biomed. Mater. 53, 341–349. 10.1016/j.jmbbm.2015.08.040
    1. Yung M., Tennant L. M., Milosavljevic S., Trask C. (2018). The multisystem effects of simulated agricultural whole body vibration on acute sensorimotor, physical, and cognitive performance. Ann. Work Expo Health 62, 884–898. 10.1093/annweh/wxy043
    1. Zeng X., Zhang Y., Kwong J. S., Zhang C., Li S., Sun F., et al. . (2015). The methodological quality assessment tools for preclinical and clinical studies, systematic review and meta-analysis, and clinical practice guideline: a systematic review. J. Evid. Based Med. 8, 2–10. 10.1111/jebm.12141
    1. Zhang M., Matinlinna J. P., Tsoi J. K. H., Liu W., Cui X., Lu W. W., et al. . (2020). Recent developments in biomaterials for long-bone segmental defect reconstruction: a narrative overview. J. Orthop. Translat. 22, 26–33. 10.1016/j.jot.2019.09.005
    1. Zhang X., Naert I., Van Schoonhoven D., Duyck J. (2012c). Direct high-frequency stimulation of peri-implant rabbit bone: a pilot study. Clin. Implant Dent. Relat. Res. 14, 558–564. 10.1111/j.1708-8208.2010.00298.x
    1. Zhang X., Torcasio A., Vandamme K., Ogawa T., van Lenthe G. H., Naert I., et al. . (2012b). Enhancement of implant osseointegration by high-frequency low-magnitude loading. PLoS ONE 7:e40488. 10.1371/journal.pone.0040488
    1. Zhang X., Vandamme K., Torcasio A., Ogawa T., Van Lenthe G. H., Naert I., et al. . (2012a). In vivo assessment of the effect of controlled high- and low-frequency mechanical loading on peri-implant bone healing. J. Royal Soc. Interface 9, 1697–1704. 10.1098/rsif.2011.0820
    1. Zhou Y., Guan X., Liu T., Wang X., Yu M., Yang G., et al. . (2015). Whole body vibration improves osseointegration by up-regulating osteoblastic activity but down-regulating osteoblast-mediated osteoclastogenesis via ERK1/2 pathway. Bone 71, 17–24. 10.1016/j.bone.2014.09.026
    1. Zhou Y., Guan X., Zhu Z., Gao S., Zhang C., Li C., et al. . (2011). Osteogenic differentiation of bone marrow-derived mesenchymal stromal cells on bone-derived scaffolds: effect of microvibration and role of ERK1/2 activation. Eur. Cell Mater. 22, 12–25. 10.22203/eCM.v022a02

Source: PubMed

3
订阅