Systemic inflammatory response in robot-assisted and laparoscopic surgery for colon cancer (SIRIRALS): study protocol of a randomized controlled trial

Pedja Cuk, Andreas Kristian Pedersen, Kate Lykke Lambertsen, Christian Backer Mogensen, Michael Festersen Nielsen, Per Helligsø, Ismail Gögenur, Mark Bremholm Ellebæk, Pedja Cuk, Andreas Kristian Pedersen, Kate Lykke Lambertsen, Christian Backer Mogensen, Michael Festersen Nielsen, Per Helligsø, Ismail Gögenur, Mark Bremholm Ellebæk

Abstract

Background: Robot-assisted surgery is being increasingly adopted in treating colorectal cancer, and the transition from laparoscopic surgery to robot-assisted surgery is a trend. The evidence of the benefits of robot-assisted surgery is sparse. However, findings are associated with improved patient-related outcomes and overall morbidity rates compared to laparoscopic surgery. This induction is unclear, considering both surgical modalities are characterized as minimally invasive. This study aims to evaluate the systemic and peritoneal inflammatory stress response induced by robot-assisted surgery compared with laparoscopic surgery for elective colon cancer resections in a prospective, randomized controlled clinical trial.

Methods: This study is a single-centre randomized controlled superiority trial with 50 colon cancer participants. The primary endpoint is the level of systemic inflammatory response expressed as serum C-reactive protein (CRP) and interleukin 6 (IL-6) levels between postoperative days one and three. Secondary endpoints include (i) levels of systemic inflammation in serum expressed by a panel of inflammatory and pro-inflammatory cytokines measured during the first three postoperative days, (ii) postoperative surgical and medical complications (30 days) according to Clavien-Dindo classification and Comprehensive Complication Index, (iii) intraoperative blood loss, (iv) conversion rate to open surgery, (v) length of surgery, (vi) operative time, (vii) the number of harvested lymph nodes, and (viii) length of hospital stay. The exploratory endpoints are (i) levels of peritoneal inflammatory response in peritoneal fluid expressed by inflammatory and pro-inflammatory cytokines between postoperative day one and three, (ii) patient-reported health-related quality of recovery-15 (QoR-15), (iii) 30 days mortality rate, (iv) heart rate variability and (v) gene transcript (mRNA) analysis.

Discussion: To our knowledge, this is the first clinical randomized controlled trial to clarify the inflammatory stress response induced by robot-assisted or laparoscopic surgery for colon cancer resections. Trial registration This trial is registered at Clinicaltrials.gov (Identifier: NCT04687384) on December, 29, 2020, Regional committee on health research ethics, Region of Southern Denmark (N75709) and Data Protection Agency, Hospital Sønderjylland, University Hospital of Southern Denmark (N20/46179).

Keywords: Colon cancer; Inflammatory surgical stress response; Laparoscopic surgery; Minimally invasive surgery; Robot-assisted surgery.

Conflict of interest statement

The main investigator and collaborators have no financial interest in the trial.

© 2021. The Author(s).

Figures

Fig. 1
Fig. 1
Schedule of Enrolment, Interventions, and Assessments (SPIRIT figure)
Fig. 2
Fig. 2
Participant timeline
Fig. 3
Fig. 3
CONSORT flow diagram

References

    1. Park JS, Choi GS, Park SY, Kim HJ, Ryuk JP. Randomized clinical trial of robot-assisted versus standard laparoscopic right colectomy. Br J Surg. 2012;99(9):1219–1226. doi: 10.1002/bjs.8841.
    1. Antoniou SA, Antoniou GA, Koch OO, Pointner R, Granderath FA. Robot-assisted laparoscopic surgery of the colon and rectum. Surg Endosc. 2012;26(1):1–11. doi: 10.1007/s00464-011-1867-y.
    1. Kim CW, Kim CH, Baik SH. Outcomes of robotic-assisted colorectal surgery compared with laparoscopic and open surgery: a systematic review. J Gastrointest Surg. 2014;18(4):816–830. doi: 10.1007/s11605-014-2469-5.
    1. Xiong B, Ma L, Huang W, Zhao Q, Cheng Y, Liu J. Robotic versus laparoscopic total mesorectal excision for rectal cancer: a meta-analysis of eight studies. J Gastrointest Surg. 2015;19(3):516–526. doi: 10.1007/s11605-014-2697-8.
    1. Chang YS, Wang JX, Chang DW. A meta-analysis of robotic versus laparoscopic colectomy. J Surg Res. 2015;195(2):465–474. doi: 10.1016/j.jss.2015.01.026.
    1. Sun Y, Xu H, Li Z, Han J, Song W, Wang J, et al. Robotic versus laparoscopic low anterior resection for rectal cancer: a meta-analysis. World J Surg Oncol. 2016;14:61. doi: 10.1186/s12957-016-0816-6.
    1. Lee SH, Kim DH, Lim SW. Robotic versus laparoscopic intersphincteric resection for low rectal cancer: a systematic review and meta-analysis. Int J Colorectal Dis. 2018;33(12):1741–1753. doi: 10.1007/s00384-018-3145-0.
    1. Holmer C, Kreis ME. Systematic review of robotic low anterior resection for rectal cancer. Surg Endosc. 2018;32(2):569–581. doi: 10.1007/s00464-017-5978-y.
    1. Trastulli S, Farinella E, Cirocchi R, Cavaliere D, Avenia N, Sciannameo F, et al. Robotic resection compared with laparoscopic rectal resection for cancer: systematic review and meta-analysis of short-term outcome. Colorectal Dis. 2012;14(4):e134–e156. doi: 10.1111/j.1463-1318.2011.02907.x.
    1. Kingo SP, Palmfeldt J, Norregaard R, Borre M, Jensen JB. Perioperative systemic inflammatory response following robot-assisted laparoscopic cystectomy vs. open mini-laparotomy cystectomy: a prospective study. Urol Int. 2017;99(4):436–45. doi: 10.1159/000478274.
    1. Novitsky YW, Litwin DE, Callery MP. The net immunologic advantage of laparoscopic surgery. Surg Endosc. 2004;18(10):1411–1419. doi: 10.1007/s00464-003-8275-x.
    1. Smajic J, Tupkovic LR, Husic S, Avdagic SS, Hodzic S, Imamovic S. Systemic inflammatory response syndrome in surgical patients. Med Arch. 2018;72(2):116–119. doi: 10.5455/medarh.2018.72.116-119.
    1. Scholl R, Bekker A, Babu R. Neuroendocrine and immune responses to surgery. Internet J Anesthesiol. 2012 doi: 10.5580/2b9a.
    1. Ng KT, Tsia AKV, Chong VYL. Robotic versus conventional laparoscopic surgery for colorectal cancer: a systematic review and meta-analysis with trial sequential analysis. World J Surg. 2019;43(4):1146–1161. doi: 10.1007/s00268-018-04896-7.
    1. Solaini L, Bazzocchi F, Cavaliere D, Avanzolini A, Cucchetti A, Ercolani G. Robotic versus laparoscopic right colectomy: an updated systematic review and meta-analysis. Surg Endosc. 2018;32(3):1104–1110. doi: 10.1007/s00464-017-5980-4.
    1. Trastulli S, Cirocchi R, Desiderio J, Coratti A, Guarino S, Renzi C, et al. Robotic versus laparoscopic approach in colonic resections for cancer and benign diseases: systematic review and meta-analysis. PLoS ONE. 2015;10(7):e0134062. doi: 10.1371/journal.pone.0134062.
    1. Cuk P, Simonsen RM, Komljen M, Nielsen MF, Helligso P, Pedersen AK, et al. Improved perioperative outcomes and reduced inflammatory stress response in malignant robot-assisted colorectal resections: a retrospective cohort study of 298 patients. World J Surg Oncol. 2021;19(1):155. doi: 10.1186/s12957-021-02263-w.
    1. Sivathondan PC, Jayne DG. The role of robotics in colorectal surgery. Ann R Coll Surg Engl. 2018;100(Suppl 7):42–53. doi: 10.1308/rcsann.supp2.42.
    1. Chan AW, Tetzlaff JM, Gotzsche PC, Altman DG, Mann H, Berlin JA, et al. SPIRIT 2013 explanation and elaboration: guidance for protocols of clinical trials. BMJ. 2013;346:e7586. doi: 10.1136/bmj.e7586.
    1. Jimenez-Rodriguez RM, Rubio-Dorado-Manzanares M, Diaz-Pavon JM, Reyes-Diaz ML, Vazquez-Monchul JM, Garcia-Cabrera AM, et al. Learning curve in robotic rectal cancer surgery: current state of affairs. Int J Colorectal Dis. 2016;31(12):1807–1815. doi: 10.1007/s00384-016-2660-0.
    1. de Angelis N, Lizzi V, Azoulay D, Brunetti F. Robotic versus laparoscopic right colectomy for colon cancer: analysis of the initial simultaneous learning curve of a surgical fellow. J Laparoendosc Adv Surg Tech A. 2016;26(11):882–92. doi: 10.1089/lap.2016.0321.
    1. Parascandola SA, Horsey ML, Hota S, Paull JO, Graham A, Pudalov N, et al. The robotic colorectal experience: an outcomes and learning curve analysis of 502 patients. Colorectal Dis. 2021;23(1):226–236. doi: 10.1111/codi.15398.
    1. Olthof PB, Giesen LJX, Vijfvinkel TS, Roos D, Dekker JWT. Transition from laparoscopic to robotic rectal resection: outcomes and learning curve of the initial 100 cases. Surg Endosc. 2021;35(6):2921–2927. doi: 10.1007/s00464-020-07731-0.
    1. Gkionis IG, Flamourakis ME, Tsagkataki ES, Kaloeidi EI, Spiridakis KG, Kostakis GE, et al. Multidimensional analysis of the learning curve for laparoscopic colorectal surgery in a regional hospital: the implementation of a standardized surgical procedure counterbalances the lack of experience. BMC Surg. 2020;20(1):308. doi: 10.1186/s12893-020-00975-6.
    1. Sabroe JE, Axelsen AR, Ellebaek MB, Dahler-Eriksen B, Qvist N. Intraperitoneal lactate/pyruvate ratio and the level of glucose and glycerol concentration differ between patients surgically treated for upper and lower perforations of the gastrointestinal tract: a pilot study. BMC Res Notes. 2017;10(1):302. doi: 10.1186/s13104-017-2622-9.
    1. Khreiss W, Huebner M, Cima RR, Dozois ER, Chua HK, Pemberton JH, et al. Improving conventional recovery with enhanced recovery in minimally invasive surgery for rectal cancer. Dis Colon Rectum. 2014;57(5):557–563. doi: 10.1097/DCR.0000000000000101.
    1. Dindo D, Demartines N, Clavien PA. Classification of surgical complications: a new proposal with evaluation in a cohort of 6336 patients and results of a survey. Ann Surg. 2004;240(2):205–213. doi: 10.1097/.
    1. Slankamenac K, Graf R, Barkun J, Puhan MA, Clavien PA. The comprehensive complication index: a novel continuous scale to measure surgical morbidity. Ann Surg. 2013;258(1):1–7. doi: 10.1097/SLA.0b013e318296c732.
    1. Kleif J, Gogenur I. Severity classification of the quality of recovery-15 score-an observational study. J Surg Res. 2018;225:101–107. doi: 10.1016/j.jss.2017.12.040.
    1. Official Journal of the European Union. Regulation (EU) 2016/679 27 April 2016 on the protection of natural persons with regard to the processing of personal data and on the free movement of such data, and repealing Directive 95/46/EC (General Data Protection Regulation): EUR-lex; 2016.
    1. World Medical Association Declaration of Helsinki: ethical principles for medical research involving human subjects. JAMA. 2013;310(20):2191–2194. doi: 10.1001/jama.2013.281053.
    1. Jansson K, Ungerstedt J, Jonsson T, Redler B, Andersson M, Ungerstedt U, et al. Human intraperitoneal microdialysis: increased lactate/pyruvate ratio suggests early visceral ischaemia. A pilot study. Scand J Gastroenterol. 2003;38(9):1007–1011. doi: 10.1080/00365520310004065.
    1. Horer TM, Skoog P, Norgren L, Magnuson A, Berggren L, Jansson K, et al. Intra-peritoneal microdialysis and intra-abdominal pressure after endovascular repair of ruptured aortic aneurysms. Eur J Vasc Endovasc Surg. 2013;45(6):596–606. doi: 10.1016/j.ejvs.2013.03.002.
    1. Verdant CL, Chierego M, De Moor V, Chamlou R, Creteur J, de Dieu MJ, et al. Prediction of postoperative complications after urgent laparotomy by intraperitoneal microdialysis: a pilot study. Ann Surg. 2006;244(6):994–1002. doi: 10.1097/01.sla.0000225092.45734.e6.
    1. Pedersen EM, Qvist N, Bisgaard C, Kelly U, Bernhard A, Pedersen MS. Peritoneal microdialysis. Early diagnosis of anastomotic leakage after low anterior resection for rectosigmoid cancer. Scand J Surg. 2009;98(3):148–54. doi: 10.1177/145749690909800304.
    1. Ellebaek MB, Rahr HB, Boye S, Fristrup C, Qvist N. Detection of early anastomotic leakage by intraperitoneal microdialysis after low anterior resection for rectal cancer: a prospective cohort study. Colorectal Dis. 2019;21(12):1387–1396. doi: 10.1111/codi.14781.
    1. Martinschek A, Stumm L, Ritter M, Heinrich E, Bolenz C, Trojan L. Prospective, controlled study of invasiveness and post-aggression metabolism in patients undergoing robotic-assisted radical prostatectomy. Urol Int. 2017;99(2):201–206. doi: 10.1159/000478027.
    1. Zawadzki M, Krzystek-Korpacka M, Gamian A, Witkiewicz W. Comparison of inflammatory responses following robotic and open colorectal surgery: a prospective study. Int J Colorectal Dis. 2017;32(3):399–407. doi: 10.1007/s00384-016-2697-0.
    1. Krzystek-Korpacka M, Zawadzki M, Lewandowska P, Szufnarowski K, Bednarz-Misa I, Jacyna K, et al. Distinct chemokine dynamics in early postoperative period after open and robotic colorectal surgery. J Clin Med. 2019 doi: 10.3390/jcm8060879.
    1. Lundin ES, Wodlin NB, Nilsson L, Theodorsson E, Ernerudh J, Kjolhede P. Markers of tissue damage and inflammation after robotic and abdominal hysterectomy in early endometrial cancer: a randomised controlled trial. Sci Rep. 2020;10(1):7226. doi: 10.1038/s41598-020-64016-1.
    1. Kuhry E, Jeekel J, Bonjer HJ. Effect of laparoscopy on the immune system. Semin Laparosc Surg. 2004;11(1):37–44. doi: 10.1177/107155170401100107.
    1. Genova P, Pantuso G, Cipolla C, Latteri MA, Abdalla S, Paquet JC, et al. Laparoscopic versus robotic right colectomy with extra-corporeal or intra-corporeal anastomosis: a systematic review and meta-analysis. Langenbecks Arch Surg. 2020 doi: 10.1007/s00423-020-01985-x.
    1. Waters PS, Cheung FP, Peacock O, Heriot AG, Warrier SK, O'Riordain DS, et al. Successful patient-oriented surgical outcomes in robotic vs laparoscopic right hemicolectomy for cancer—a systematic review. Colorectal Dis. 2020;22(5):488–499. doi: 10.1111/codi.14822.

Source: PubMed

3
订阅