The pleiotropic effect of physical exercise on mitochondrial dynamics in aging skeletal muscle

Elena Barbieri, Deborah Agostini, Emanuela Polidori, Lucia Potenza, Michele Guescini, Francesco Lucertini, Giosuè Annibalini, Laura Stocchi, Mauro De Santi, Vilberto Stocchi, Elena Barbieri, Deborah Agostini, Emanuela Polidori, Lucia Potenza, Michele Guescini, Francesco Lucertini, Giosuè Annibalini, Laura Stocchi, Mauro De Santi, Vilberto Stocchi

Abstract

Decline in human muscle mass and strength (sarcopenia) is one of the principal hallmarks of the aging process. Regular physical exercise and training programs are certain powerful stimuli to attenuate the physiological skeletal muscle alterations occurring during aging and contribute to promote health and well-being. Although the series of events that led to these muscle adaptations are poorly understood, the mechanisms that regulate these processes involve the "quality" of skeletal muscle mitochondria. Aerobic/endurance exercise helps to maintain and improve cardiovascular fitness and respiratory function, whereas strength/resistance-exercise programs increase muscle strength, power development, and function. Due to the different effect of both exercises in improving mitochondrial content and quality, in terms of biogenesis, dynamics, turnover, and genotype, combined physical activity programs should be individually prescribed to maximize the antiaging effects of exercise.

Figures

Figure 1
Figure 1
Effect of physical exercise and major signalling pathways activated on mitochondrial “quality” in aging skeletal muscle. Mitochondria represent the privileged site of ROS production. ROS may either act as signalling molecules, inducing a prosurvival response with positive muscle adaptation, or cause damage to cell components and sarcopenia. Low levels of ROS generated by skeletal muscle contraction activate a mitochondrial response that ameliorate the “quality” of skeletal muscle mitochondria cells at different molecular levels: (i) biogenesis through the action of the key regulators PGC-1α, NRF-1/2, T-FAM, and mTFB-1/2; (ii) dynamics by the mitochondrial remodeling GTPase proteins such as mitofusin-1/2 and OPA-1 for fusion and DRP-1 and FIS-1 for fission; (iii) turnover of damaged mitochondria by mitophagy through PINK-1, PARKIN, ATROGINS, and BNIP-3; and (iv) quality control by degradation of misfolded proteins or again portion of damaged mitochondria by the proteolytic system with chaperones and proteases. Slight ROS accumulation also promotes the phosphorylation state of many proteins involved in the muscle signalling responses. Moreover, low levels of ROS induced by RT play an important role in inducing upregulation of growth factors such as IGF-I. The expression of this muscle hormone has beneficial effects in muscle protein balance, muscle adaptation, and increasing muscle mass; neural activation; and number of activated satellite cells and contributes to the development of an oxidant-resistant phenotype, therefore preventing oxidative damage and chronic diseases. Moreover, the incorporation of satellite cell-derived mitochondria explains the increase in wild-type mtDNA known as “gene-shifting.” Thus, low levels of ROS elicit positive effects on muscle physiological responses. Moreover, antioxidant enzymes will function as back regulators of intracellular low ROS levels. By contrast, high levels of ROS cause functional oxidative damages of proteins, lipids, nucleic acids, and cell components and promote signalling cascades for mitoptosis or apoptosis. For these reasons high levels of ROS act as worsening factors in muscle atrophy, sarcopenia, and aging-related muscle diseases. Uptake of calcium by mitochondria, together with ROS, control mitochondrial quality responses in skeletal muscle cells and it is tightly regulated by sarcomeric localization and muscle chronic contraction. It occurs at calcium release unit (CRU) mitochondrion contacts where microdomains of high calcium concentration are present. RT: resistance training; CRUs: calcium release units; mtDNA: mitochondrial DNA; ET: endurance training; ROS: reactive oxygen species.

References

    1. Power G. A., Dalton B. H., Rice C. L. Human neuromuscular structure and function in old age: a brief review. Journal of Sport and Health Science. 2013;2(4):215–226. doi: 10.1016/j.jshs.2013.07.001.
    1. Song X., Mitnitski A., Rockwood K. Prevalence and 10-year outcomes of frailty in older adults in relation to deficit accumulation. Journal of the American Geriatrics Society. 2010;58(4):681–687. doi: 10.1111/j.1532-5415.2010.02764.x.
    1. Eeles E. M. P., White S. V., O'Mahony S. M., Bayer A. J., Hubbard R. E. The impact of frailty and delirium on mortality in older inpatients. Age and Ageing. 2012;41(3):412–416. doi: 10.1093/ageing/afs021.afs021
    1. Fried L. P., Tangen C. M., Walston J., et al. Frailty in older adults: evidence for a phenotype. The Journals of Gerontology. Series A, Biological Sciences and Medical Sciences. 2001;56(3):M146–M156. doi: 10.1093/gerona/56.3.m146.
    1. Walston J., Hadley E. C., Ferrucci L., et al. Research agenda for frailty in older adults: toward a better understanding of physiology and etiology: summary from the American Geriatrics Society/National Institute on Aging Research Conference on Frailty in Older Adults. Journal of the American Geriatrics Society. 2006;54(6):991–1001. doi: 10.1111/j.1532-5415.2006.00745.x.
    1. Clegg A., Young J., Iliffe S., Rikkert M. O., Rockwood K. Frailty in elderly people. The Lancet. 2013;381(9868):752–762. doi: 10.1016/s0140-6736(12)62167-9.
    1. Narici M. V., Maffulli N. Sarcopenia: characteristics, mechanisms and functional significance. British Medical Bulletin. 2010;95(1):139–159. doi: 10.1093/bmb/ldq008.
    1. De Rezende L. F. M., Rey-López J. P., Matsudo V. K. R., Luiz O. D. C. Sedentary behavior and health outcomes among older adults: a systematic review. BMC Public Health. 2014;14(1, article 333) doi: 10.1186/1471-2458-14-333.
    1. Johnson M. L., Robinson M. M., Nair S. K. Skeletal muscle aging and the mitochondrion. Trends in Endocrinology and Metabolism. 2013;24(5):247–256. doi: 10.1016/j.tem.2012.12.003.
    1. Garber C. E., Blissmer B., Deschenes M. R., et al. American College of Sports Medicine position stand. Quantity and quality of exercise for developing and maintaining cardiorespiratory, musculoskeletal, and neuromotor fitness in apparently healthy adults: guidance for prescribing exercise. Medicine and Science in Sports and Exercise. 2011;43(7):1334–1359. doi: 10.1249/mss.0b013e318213fefb.
    1. Warburton D. E., Nicoland C. W., Bredin S. S. Health benefits of physical activity: the evidence. Canadian Medical Association Journal. 2006;174(6):801–809. doi: 10.1503/cmaj.051351.
    1. Harman D. Aging: a theory based on free radical and radiation chemistry. Journal of Gerontology. 1956;11(3):298–300. doi: 10.1093/geronj/11.3.298.
    1. Harman D. The biologic clock: the mitochondria? Journal of the American Geriatrics Society. 1972;20(4):145–147.
    1. Miquel J., Economos A. C., Fleming J., Johnson J. E., Jr. Mitochondrial role in cell aging. Experimental Gerontology. 1980;15(6):575–591. doi: 10.1016/0531-5565(80)90010-8.
    1. López-Otín C., Blasco M. A., Partridge L., Serrano M., Kroemer G. The hallmarks of aging. Cell. 2013;153(6):1194–1217. doi: 10.1016/j.cell.2013.05.039.
    1. Shokolenko I. N. Aging: a mitochondrial DNA perspective, critical analysis and an update. World Journal of Experimental Medicine. 2014;4(4):46–57.
    1. Greaves L. C., Elson J. L., Nooteboom M., et al. Comparison of mitochondrial mutation spectra in ageing human colonic epithelium and disease: absence of evidence for purifying selection in somatic mitochondrial DNA point mutations. PLoS Genetics. 2012;8(11) doi: 10.1371/journal.pgen.1003082.e1003082
    1. Song X., Deng J. H., Liu C. J., Bai Y. Specific point mutations may not accumulate with aging in the mouse mitochondrial DNA control region. Gene. 2005;350(2):193–199. doi: 10.1016/j.gene.2005.02.008.
    1. Khrapko K., Kraytsberg Y., de Grey A. D. N. J., Vijg J., Schon E. A. Does premature aging of the mtDNA mutator mouse prove that mtDNA mutations are involved in natural aging? Aging Cell. 2006;5(3):279–282. doi: 10.1111/j.1474-9726.2006.00209.x.
    1. Shokolenko I., Venediktova N., Bochkareva A., Wilson G. I., Alexeyev M. F. Oxidative stress induces degradation of mitochondrial DNA. Nucleic Acids Research. 2009;37(8):2539–2548. doi: 10.1093/nar/gkp100.
    1. Kennedy S. R., Salk J. J., Schmitt M. W., Loeb L. A. Ultra-sensitive sequencing reveals an age-related increase in somatic mitochondrial mutations that are inconsistent with oxidative damage. PLoS Genetics. 2013;9(9) doi: 10.1371/journal.pgen.1003794.e1003794
    1. Shock L. S., Thakkar P. V., Peterson E. J., Moran R. G., Taylor S. M. DNA methyltransferase 1, cytosine methylation, and cytosine hydroxymethylation in mammalian mitochondria. Proceedings of the National Academy of Sciences of the United States of America. 2011;108(9):3630–3635. doi: 10.1073/pnas.1012311108.
    1. Valavanidis A., Vlachogianni T., Fiotakis C. 8-Hydroxy-2′ -deoxyguanosine (8-OHdG): a critical biomarker of oxidative stress and carcinogenesis. Journal of Environmental Science and Health, Part C: Environmental Carcinogenesis and Ecotoxicology Reviews. 2009;27(2):120–139. doi: 10.1080/10590500902885684.
    1. Potenza L., Calcabrini C., De Bellis R., et al. Effect of surgical stress on nuclear and mitochondrial DNA from healthy sections of colon and rectum of patients with colorectal cancer. Journal of Biosciences. 2011;36(2):243–251. doi: 10.1007/s12038-011-9064-7.
    1. Turk P. W., Laayoun A., Smith S. S., Weitzman S. A. DNA adduct 8-hydroxyl-2′-deoxyguanosine (8-hydroxyguanine) affects function of human DNA methyltransferase. Carcinogenesis. 1995;16(5):1253–1255. doi: 10.1093/carcin/16.5.1253.
    1. Wei Y.-H., Ma Y.-S., Lee H.-C., Lee C.-F., Lu C.-Y. Mitochondrial theory of aging matures—roles of mtDNA mutation and oxidative stress in human aging. Chinese Medical Journal. 2001;64(5):259–270.
    1. Kujoth C. C., Hiona A., Pugh T. D., et al. Medicine: Mitochondrial DNA mutations, oxidative stress, and apoptosis in mammalian aging. Science. 2005;309(5733):481–484. doi: 10.1126/science.1112125.
    1. Trifunovic A., Hansson A., Wredenberg A., et al. Somatic mtDNA mutations cause aging phenotypes without affecting reactive oxygen species production. Proceedings of the National Academy of Sciences of the United States of America. 2005;102(50):17993–17998. doi: 10.1073/pnas.0508886102.
    1. Trifunovic A., Wredenberg A., Falkenberg M., et al. Premature ageing in mice expressing defective mitochondrial DNA polymerase. Nature. 2004;429(6990):417–423. doi: 10.1038/nature02517.
    1. Edgar D., Shabalina I., Camara Y., et al. Random point mutations with major effects on protein-coding genes are the driving force behind premature aging in mtDNA mutator mice. Cell Metabolism. 2009;10(2):131–138. doi: 10.1016/j.cmet.2009.06.010.
    1. Hütter E., Skovbro M., Lener B., et al. Oxidative stress and mitochondrial impairment can be separated from lipofuscin accumulation in aged human skeletal muscle. Aging Cell. 2007;6(2):245–256. doi: 10.1111/j.1474-9726.2007.00282.x.
    1. Barja G. Updating the mitochondrial free radical theory of aging: an integrated view, key aspects, and confounding concepts. Antioxidants & Redox Signaling. 2013;19(12):1420–1445. doi: 10.1089/ars.2012.5148.
    1. Chen H., Vermulst M., Wang Y. E., et al. Mitochondrial fusion is required for mtdna stability in skeletal muscle and tolerance of mtDNA mutations. Cell. 2010;141(2):280–289. doi: 10.1016/j.cell.2010.02.026.
    1. Ristow M. Unraveling the truth about antioxidants: mitohormesis explains ROS-induced health benefits. Nature Medicine. 2014;20(7):709–711. doi: 10.1038/nm.3624.
    1. Ristow M., Zarse K. How increased oxidative stress promotes longevity and metabolic health: the concept of mitochondrial hormesis (mitohormesis) Experimental Gerontology. 2010;45(6):410–418. doi: 10.1016/j.exger.2010.03.014.
    1. Ristow M., Zarse K., Oberbach A., et al. Antioxidants prevent health-promoting effects of physical exercise in humans. Proceedings of the National Academy of Sciences of the United States of America. 2009;106(21):8665–8670. doi: 10.1073/pnas.0903485106.
    1. Howes R. M. The free radical fantasy: a panoply of paradoxes. Annals of the New York Academy of Sciences. 2006;1067(1):22–26. doi: 10.1196/annals.1354.004.
    1. Bjelakovic G., Nikolova D., Gluud C. Antioxidant supplements to prevent mortality. Journal of the American Medical Association. 2013;310(11):1178–1179. doi: 10.1001/jama.2013.277028.
    1. Pinti M., Cevenini E., Nasi M., et al. Circulating mitochondrial DNA increases with age and is a familiar trait: implications for ‘inflamm-aging’. European Journal of Immunology. 2014;44(5):1552–1562. doi: 10.1002/eji.201343921.
    1. Nilwik R., Snijders T., Leenders M., et al. The decline in skeletal muscle mass with aging is mainly attributed to a reduction in type II muscle fiber size. Experimental Gerontology. 2013;48(5):492–498. doi: 10.1016/j.exger.2013.02.012.
    1. McGregor R. A., Cameron-Smith D., Poppitt S. D. It is not just muscle mass: a review of muscle quality, composition and metabolism during ageing as determinants of muscle function and mobility in later life. Longevity & Healthspan. 2014;3(1, article 9) doi: 10.1186/2046-2395-3-9.
    1. Nair K. S. Aging muscle. The American Journal of Clinical Nutrition. 2005;81(5):953–963.
    1. Musarò A., McCullagh K., Paul A., et al. Localized Igf-1 transgene expression sustains hypertrophy and regeneration in senescent skeletal muscle. Nature Genetics. 2001;27(2):195–200. doi: 10.1038/84839.
    1. Philippou A., Barton E. R. Optimizing IGF-I for skeletal muscle therapeutics. Growth Hormone & IGF Research. 2014;24(5):157–163. doi: 10.1016/j.ghir.2014.06.003.
    1. Kokoszko A., Dabrowski J., Lewiński A., Karbownik-Lewińska M. Protective effects of GH and IGF-I against iron-induced lipid peroxidation in vivo. Experimental and Toxicologic Pathology. 2008;60(6):453–458. doi: 10.1016/j.etp.2008.04.012.
    1. Brisson B. K., Barton E. R. New modulators for IGF-I activity within IGF-I processing products. Frontiers in Endocrinology (Lausanne) 2013;4, article 42 doi: 10.3389/fendo.2013.00042.
    1. Satoh A., Brace C. S., Ben-Josef G., et al. SIRT1 promotes the central adaptive response to diet restriction through activation of the dorsomedial and lateral nuclei of the hypothalamus. The Journal of Neuroscience. 2010;30(30):10220–10232. doi: 10.1523/jneurosci.1385-10.2010.
    1. Kenyon C. J. The genetics of ageing. Nature. 2010;464(7288):504–512. doi: 10.1038/nature08980.
    1. Messier V., Rabasa-Lhoret R., Barbat-Artigas S., Elisha B., Karelis A. D., Aubertin-Leheudre M. Menopause and sarcopenia: a potential role for sex hormones. Maturitas. 2011;68(4):331–336. doi: 10.1016/j.maturitas.2011.01.014.
    1. Sakuma K., Yamaguchi A. Sarcopenia and age-related endocrine function. International Journal of Endocrinology. 2012;2012:10. doi: 10.1155/2012/127362.127362
    1. Altun M., Besche H. C., Overkleeft H. S., et al. Muscle wasting in aged, sarcopenic rats is associated with enhanced activity of the ubiquitin proteasome pathway. The Journal of Biological Chemistry. 2010;285(51):39597–39608. doi: 10.1074/jbc.m110.129718.
    1. Metter E. J., Lynch N., Conwit R., Lindle R., Tobin J., Hurley B. Muscle quality and age: cross-sectional and longitudinal comparisons. The Journals of Gerontology—Series A Biological Sciences and Medical Sciences. 1999;54(5):B207–B218. doi: 10.1093/gerona/54.5.b207.
    1. Goodpaster B. H., Park S. W., Harris T. B., et al. The loss of skeletal muscle strength, mass, and quality in older adults: the health, aging and body composition study. The Journals of Gerontology, Series A: Biological Sciences and Medical Sciences. 2006;61(10):1059–1064. doi: 10.1093/gerona/61.10.1059.
    1. Trappe S., Gallagher P., Harber M., Carrithers J., Fluckey J., Trappe T. Single muscle fibre contractile properties in young and old men and women. The Journal of Physiology. 2003;552(1):47–58. doi: 10.1113/jphysiol.2003.044966.
    1. van Wessel T., de Haan A., van der Laarse W. J., Jaspers R. T. The muscle fiber type-fiber size paradox: hypertrophy or oxidative metabolism? European Journal of Applied Physiology. 2010;110(4):665–694. doi: 10.1007/s00421-010-1545-0.
    1. Clemson L., Fiatarone Singh M. A., Bundy A., et al. Integration of balance and strength training into daily life activity to reduce rate of falls in older people (the LiFE study): randomised parallel trial. British Medical Journal. 2012;345(7870) doi: 10.1136/bmj.e4547.e4547
    1. Proctor D. N., Joyner M. J. Skeletal muscle mass and the reduction of VO2max in trained older subjects. Journal of Applied Physiology. 1997;82(5):1411–1415.
    1. Mammucari C., Rizzuto R. Signaling pathways in mitochondrial dysfunction and aging. Mechanisms of Ageing and Development. 2010;131(7-8):536–543. doi: 10.1016/j.mad.2010.07.003.
    1. Shigenaga M. K., Hagen T. M., Ames B. N. Oxidative damage and mitochondrial decay in aging. Proceedings of the National Academy of Sciences of the United States of America. 1994;91(23):10771–10778. doi: 10.1073/pnas.91.23.10771.
    1. Zampieri S., Pietrangelo L., Loefler S., et al. Lifelong physical exercise delays age-associated skeletal muscle decline. The Journals of Gerontology, Series A: Biological Sciences and Medical Sciences. 2015;70(2):163–173. doi: 10.1093/gerona/glu006.
    1. Boncompagni S., Rossi A. E., Micaroni M., et al. Mitochondria are linked to calcium stores in striated muscle by developmentally regulated tethering structures. Molecular Biology of the Cell. 2009;20(3):1058–1067. doi: 10.1091/mbc.E08-07-0783.
    1. de Stefani D., Raffaello A., Teardo E., Szabó I., Rizzuto R. A forty-kilodalton protein of the inner membrane is the mitochondrial calcium uniporter. Nature. 2011;476(7360):336–340. doi: 10.1038/nature10230.
    1. Crane J. D., Devries M. C., Safdar A., Hamadeh M. J., Tarnopolsky M. A. The effect of aging on human skeletal muscle mitochondrial and intramyocellular lipid ultrastructure. The Journals of Gerontology Series A: Biological Sciences and Medical Sciences. 2010;65(2):119–128. doi: 10.1093/gerona/glp179.
    1. Schrauwen-Hinderling V. B., Hesselink M. K. C., Schrauwen P., Kooi M. E. Intramyocellular lipid content in human skeletal muscle. Obesity. 2006;14(3):357–367. doi: 10.1038/oby.2006.47.
    1. Devries M. C., Samjoo I. A., Hamadeh M. J., et al. Endurance training modulates intramyocellular lipid compartmentalization and morphology in skeletal muscle of lean and obese women. The Journal of Clinical Endocrinology & Metabolism. 2013;98(12):4852–4862. doi: 10.1210/jc.2013-2044.
    1. Newsholme E. A., Williams T. The role of phosphoenolpyruvate carboxykinase in amino acid metabolism in muscle. The Biochemical Journal. 1978;176(2):623–626.
    1. Hanson R. W., Hakimi P. Born to run; the story of the PEPCK-Cmus mouse. Biochimie. 2008;90(6):838–842. doi: 10.1016/j.biochi.2008.03.009.
    1. Harridge S. D., Kryger A., Stensgaard A. Knee extensor strength, activation, and size in very elderly people following strength training. Muscle & Nerve. 1999;22(7):831–839. doi: 10.1002/(sici)1097-4598(199907)22:760;831::aid-mus462;;2-3.
    1. American College of Sports Medicine, Chodzko-Zajko W. J., Proctor D. N., et al. American College of Sports Medicine position stand. Exercise and physical activity for older adults. Medicine and Science in Sports and Exercise. 2009;41(7):1510–1530. doi: 10.1249/MSS.0b013e3181a0c95c.
    1. Zampieri S., Pietrangelo L., Loefler S., et al. Lifelong physical exercise delays age-associated skeletal muscle decline. The Journals of Gerontology. Series A: Biological Sciences and Medical Sciences. 2015;70(2):163–173. doi: 10.1093/gerona/glu006.
    1. Melov S., Tamopolsky M. A., Bechman K., Felkey K., Hubbard A. Resistance exercise reverses aging in human skeletal muscle. PLoS ONE. 2007;2(5, article e465) doi: 10.1371/journal.pone.0000465.
    1. Yu R., Wong M., Leung J., Lee J., Auyeung T. W., Woo J. Incidence, reversibility, risk factors and the protective effect of high body mass index against sarcopenia in community-dwelling older Chinese adults. Geriatrics & Gerontology International. 2014;14(supplement 1):15–28. doi: 10.1111/ggi.12220.
    1. Peterson C. M., Johannsen D. L., Ravussin E. Skeletal muscle mitochondria and aging: a review. Journal of Aging Research. 2012;2012:20. doi: 10.1155/2012/194821.194821
    1. Terman A., Kurz T., Navratil M., Arriaga E. A., Brunk U. T. Mitochondrial Turnover and aging of long-lived postmitotic cells: the mitochondrial-lysosomal axis theory of aging. Antioxidants and Redox Signaling. 2010;12(4):503–535. doi: 10.1089/ars.2009.2598.
    1. Miller B. F., Robinson M. M., Bruss M. D., Hellerstein M., Hamilton K. L. A comprehensive assessment of mitochondrial protein synthesis and cellular proliferation with age and caloric restriction. Aging Cell. 2012;11(1):150–161. doi: 10.1111/j.1474-9726.2011.00769.x.
    1. Conley K. E., Jubrias S. A., Esselman P. C. Oxidative capacity and ageing in human muscle. The Journal of Physiology. 2000;526(1):203–210. doi: 10.1111/j.1469-7793.2000.t01-1-00203.x.
    1. Chabi B., Mousson de Camaret B., Chevrollier A., Boisgard S., Stepien G. Random mtDNA deletions and functional consequence in aged human skeletal muscle. Biochemical and Biophysical Research Communications. 2005;332(2):542–549. doi: 10.1016/j.bbrc.2005.04.153.
    1. Rossi A. E., Boncompagni S., Dirksen R. T. Sarcoplasmic reticulum-mitochondrial symbiosis: bidirectional signaling in skeletal muscle. Exercise and Sport Sciences Reviews. 2009;37(1):29–35. doi: 10.1097/jes.0b013e3181911fa4.
    1. Weisleder N., Brotto M., Komazaki S., et al. Muscle aging is associated with compromised Ca2+ spark signaling and segregated intracellular Ca2+ release. The Journal of Cell Biology. 2006;174(5):639–645. doi: 10.1083/jcb.200604166.
    1. Reznick R. M., Zong H., Li J., et al. Aging-associated reductions in AMP-activated protein kinase activity and mitochondrial biogenesis. Cell Metabolism. 2007;5(2):151–156. doi: 10.1016/j.cmet.2007.01.008.
    1. Choksi K. B., Nuss J. E., DeFord J. H., Papaconstantinou J. Age-related alterations in oxidatively damaged proteins of mouse skeletal muscle mitochondrial electron transport chain complexes. Free Radical Biology & Medicine. 2008;45(6):826–838. doi: 10.1016/j.freeradbiomed.2008.06.006.
    1. Berlett B. S., Stadtman E. R. Protein oxidation in aging, disease, and oxidative stress. The Journal of Biological Chemistry. 1997;272(33):20313–20316. doi: 10.1074/jbc.272.33.20313.
    1. Baraibar M. A., Liu L., Ahmed E. K., Friguet B. Protein oxidative damage at the crossroads of cellular senescence, aging, and age-related diseases. Oxidative Medicine and Cellular Longevity. 2012;2012:8. doi: 10.1155/2012/919832.919832
    1. Ahmed E. K., Rogowska-Wrzesinska A., Roepstorff P., Bulteau A.-L., Friguet B. Protein modification and replicative senescence of WI-38 human embryonic fibroblasts. Aging Cell. 2010;9(2):252–272. doi: 10.1111/j.1474-9726.2010.00555.x.
    1. Baraibar M. A., Gueugneau M., Duguez S., Butler-Browne G., Bechet D., Friguet B. Expression and modification proteomics during skeletal muscle ageing. Biogerontology. 2013;14(3):339–352. doi: 10.1007/s10522-013-9426-7.
    1. Safdar A., Hamadeh M. J., Kaczor J. J., Raha S., deBeer J., Tarnopolsky M. A. Aberrant mitochondrial homeostasis in the skeletal muscle of sedentary older adults. PLoS ONE. 2010;5(5) doi: 10.1371/journal.pone.0010778.e10778
    1. Lanza I. R., Short D. K., Short K. R., et al. Endurance exercise as a countermeasure for aging. Diabetes. 2008;57(11):2933–2942. doi: 10.2337/db08-0349.
    1. Puche J. E., García-Fernández M., Muntané J., Rioja J., González-Barón S., Cortazar I. C. Low doses of insulin-like growth factor-I induce mitochondrial protection in aging rats. Endocrinology. 2008;149(5):2620–2627. doi: 10.1210/en.2007-1563.
    1. Hernández-Aguilera A., Rull A., Rodríguez-Gallego E., et al. Mitochondrial dysfunction: a basic mechanism in inflammation-related non-communicable diseases and therapeutic opportunities. Mediators of Inflammation. 2013;2013:13. doi: 10.1155/2013/135698.135698
    1. Velarde M. C. Mitochondrial and sex steroid hormone crosstalk during aging. Longevity & Healthspan. 2014;3(1, article 2) doi: 10.1186/2046-2395-3-2.
    1. Psarra A.-M. G., Sekeris C. E. Steroid and thyroid hormone receptors in mitochondria. IUBMB Life. 2008;60(4):210–223. doi: 10.1002/iub.37.
    1. Psarra A.-M. G., Sekeris C. E. Glucocorticoid receptors and other nuclear transcription factors in mitochondria and possible functions. Biochimica et Biophysica Acta. 2009;1787(5):431–436. doi: 10.1016/j.bbabio.2008.11.011.
    1. Liu X., Weaver D., Shirihai O., Hajnóczky G. Mitochondrial ‘kiss-and-run’: interplay between mitochondrial motility and fusion–fission dynamics. The EMBO Journal. 2009;28(20):3074–3089. doi: 10.1038/emboj.2009.255.
    1. Wenz T., Rossi S. G., Rotundo R. L., Spiegelman B. M., Moraes C. T. Increased muscle PGC-1α expression protects from sarcopenia and metabolic disease during aging. Proceedings of the National Academy of Sciences of the United States of America. 2009;106(48):20405–20410. doi: 10.1073/pnas.0911570106.
    1. Sestili P., Barbieri E., Martinelli C., et al. Creatine supplementation prevents the inhibition of myogenic differentiation in oxidatively injured C2C12 murine myoblasts. Molecular Nutrition & Food Research. 2009;53(9):1187–1204. doi: 10.1002/mnfr.200800504.
    1. Barbieri E., Battistelli M., Casadei L., et al. Morphofunctional and biochemical approaches for studying mitochondrial changes during myoblasts differentiation. Journal of Aging Research. 2011;2011:16. doi: 10.4061/2011/845379.845379
    1. Kang C., O'Moore K. M., Dickman J. R., Ji L. L. Exercise activation of muscle peroxisome proliferator-activated receptor-gamma coactivator-1alpha signaling is redox sensitive. Free Radical Biology & Medicine. 2009;47(10):1394–1400. doi: 10.1016/j.freeradbiomed.2009.08.007.
    1. Irrcher I., Ljubicic V., Hood D. A. Interactions between ROS and AMP kinase activity in the regulation of PGC-1α transcription in skeletal muscle cells. American Journal of Physiology: Cell Physiology. 2009;296(1):C116–C123. doi: 10.1152/ajpcell.00267.2007.
    1. Romanello V., Guadagnin E., Gomes L., et al. Mitochondrial fission and remodelling contributes to muscle atrophy. The EMBO Journal. 2010;29(10):1774–1785. doi: 10.1038/emboj.2010.60.
    1. Mihaylova M. M., Shaw R. J. The AMPK signalling pathway coordinates cell growth, autophagy and metabolism. Nature Cell Biology. 2011;13(9):1016–1023. doi: 10.1038/ncb2329.
    1. Arnoult D., Grodet A., Lee Y. J., Estaquier J., Blackstone C. Release of OPA1 during apoptosis participates in the rapid and complete release of cytochrome c and subsequent mitochondrial fragmentation. The Journal of Biological Chemistry. 2005;280(42):35742–35750. doi: 10.1074/jbc.m505970200.
    1. Misko A., Jiang S., Wegorzewska I., Milbrandt J., Baloh R. H. Mitofusin 2 is necessary for transport of axonal mitochondria and interacts with the Miro/Milton complex. The Journal of Neuroscience. 2010;30(12):4232–4240. doi: 10.1523/jneurosci.6248-09.2010.
    1. Cipolat S., Rudka T., Hartmann D., et al. Mitochondrial rhomboid PARL regulates cytochrome c release during apoptosis via OPA1-dependent cristae remodeling. Cell. 2006;126(1):163–175. doi: 10.1016/j.cell.2006.06.021.
    1. Sheng Z.-H., Cai Q. Mitochondrial transport in neurons: impact on synaptic homeostasis and neurodegeneration. Nature Reviews Neuroscience. 2012;13(2):77–93. doi: 10.1038/nrn3156.
    1. Cuervo A. M., Bergamini E., Brunk U. T., Dröge W., Ffrench M., Terman A. Autophagy and aging: the importance of maintaining ‘clean’ cells. Autophagy. 2005;1(3):131–140. doi: 10.4161/auto.1.3.2017.
    1. Masiero E., Sandri M. Autophagy inhibition induces atrophy and myopathy in adult skeletal muscles. Autophagy. 2010;6(2):307–309. doi: 10.4161/auto.6.2.11137.
    1. Vellai T., Takács-Vellai K., Sass M., Klionsky D. J. The regulation of aging: does autophagy underlie longevity? Trends in Cell Biology. 2009;19(10):487–494. doi: 10.1016/j.tcb.2009.07.007.
    1. Löw P. The role of ubiquitin-proteasome system in ageing. General and Comparative Endocrinology. 2011;172(1):39–43. doi: 10.1016/j.ygcen.2011.02.005.
    1. Lyamzaev K. G., Nepryakhina O. K., Saprunova V. B., et al. Novel mechanism of elimination of malfunctioning mitochondria (mitoptosis): formation of mitoptotic bodies and extrusion of mitochondrial material from the cell. Biochimica et Biophysica Acta. 2008;1777(7-8):817–825. doi: 10.1016/j.bbabio.2008.03.027.
    1. Guescini M., Guidolin D., Vallorani L., et al. C2C12 myoblasts release micro-vesicles containing mtDNA and proteins involved in signal transduction. Experimental Cell Research. 2010;316(12):1977–1984. doi: 10.1016/j.yexcr.2010.04.006.
    1. Mair J. L., Boreham C. A., Ditroilo M., et al. Benefits of a worksite or home-based bench stepping intervention for sedentary middle-aged adults—a pilot study. Clinical Physiology and Functional Imaging. 2014;34(1):10–17. doi: 10.1111/cpf.12056.
    1. Yarasheski K. E., Pak-Loduca J., Hasten D. L., Obert K. A., Brown M. B., Sinacore D. R. Resistance exercise training increases mixed muscle protein synthesis rate in frail women and men ≥76 yr old. The American Journal of Physiology—Endocrinology and Metabolism. 1999;277(1, part 1):E118–E125.
    1. Fiatarone Singh M. A., Ding W., Manfredi T. J., et al. Insulin-like growth factor I in skeletal muscle after weight-lifting exercise in frail elders. The American Journal of Physiology: Endocrinology and Metabolism. 1999;277(1, part 1):E135–E143.
    1. Parise G., Brose A. N., Tarnopolsky M. A. Resistance exercise training decreases oxidative damage to DNA and increases cytochrome oxidase activity in older adults. Experimental Gerontology. 2005;40(3):173–180. doi: 10.1016/j.exger.2004.09.002.
    1. Martel G. F., Roth S. M., Ivey F. M., et al. Age and sex affect human muscle fibre adaptations to heavy-resistance strength training. Experimental Physiology. 2006;91(2):457–464. doi: 10.1113/expphysiol.2005.032771.
    1. Häkkinen K., Kraemer W. J., Pakarinen A., et al. Effects of heavy resistance/power training on maximal strength, muscle morphology, and hormonal response patterns in 60–75-year-old men and women. Canadian Journal of Applied Physiology. 2002;27(3):213–231. doi: 10.1139/h02-013.
    1. Cadore E. L., Pinto R. S., Bottaro M., Izquierdo M. Strength and endurance training prescription in healthy and frail elderly. Aging and Disease. 2014;5(3):183–195. doi: 10.14336/ad.2014.0500183.
    1. Ogata T., Yamasaki Y. Ultra-high-resolution scanning electron microscopy of mitochondria and sarcoplasmic reticulum arrangement in human red, white, and intermediate muscle fibers. The Anatomical Record. 1997;248(2):214–223. doi: 10.1002/(SICI)1097-0185(199706)248:2<214::AID-AR8>;2-S.
    1. Hood D. A. Invited review: contractile activity-induced mitochondrial biogenesis in skeletal muscle. Journal of Applied Physiology. 2001;90(3):1137–1157.
    1. Barbieri E., Sestili P., Vallorani L., et al. Mitohormesis in muscle cells: a morphological, molecular, and proteomic approach. Muscles, Ligaments and Tendons Journal. 2013;3(4):254–266. doi: 10.11138/mltj/2013.3.4.254.
    1. Yan Z., Lira V. A., Greene N. P. Exercise training-induced regulation of mitochondrial quality. Exercise and Sport Sciences Reviews. 2012;40(3):159–164.
    1. Whitman S. A., Wacker M. J., Richmond S. R., Godard M. P. Contributions of the ubiquitin-proteasome pathway and apoptosis to human skeletal muscle wasting with age. Pflugers Archiv. 2005;450(6):437–446. doi: 10.1007/s00424-005-1473-8.
    1. Marzetti E., Hwang J. C. Y., Lees H. A., et al. Mitochondrial death effectors: relevance to sarcopenia and disuse muscle atrophy. Biochimica et Biophysica Acta. 2010;1800(3):235–244. doi: 10.1016/j.bbagen.2009.05.007.
    1. Ji L. L. Exercise at old age: does it increase or alleviate oxidative stress? Annals of the New York Academy of Sciences. 2001;928:236–247.
    1. Eynon N., Morán M., Birk R., Lucia A. The champions' mitochondria: is it genetically determined? A review on mitochondrial DNA and elite athletic performance. Physiological Genomics. 2011;43(13):789–798. doi: 10.1152/physiolgenomics.00029.2011.
    1. Bouchard C., Sarzynski M. A., Rice T. K., et al. Genomic predictors of the maximal O2 uptake response to standardized exercise training programs. Journal of Applied Physiology. 2011;110(5):1160–1170. doi: 10.1152/japplphysiol.00973.2010.
    1. Klissouras V. Heritability of adaptive variation. Journal of Applied Physiology. 1971;31(3):338–344.
    1. Bishop D. J., Granata C., Eynon N. Can we optimise the exercise training prescription to maximise improvements in mitochondria function and content? Biochimica et Biophysica Acta. 2014;1840(4):1266–1275. doi: 10.1016/j.bbagen.2013.10.012.
    1. Tarnopolsky M. A. Mitochondrial DNA shifting in older adults following resistance exercise training. Applied Physiology, Nutrition and Metabolism. 2009;34(3):348–354. doi: 10.1139/H09-022.
    1. Wilkinson S. B., Phillips S. M., Atherton P. J., et al. Differential effects of resistance and endurance exercise in the fed state on signalling molecule phosphorylation and protein synthesis in human muscle. The Journal of Physiology. 2008;586(15):3701–3717. doi: 10.1113/jphysiol.2008.153916.
    1. Tang J. E., Hartman J. W., Phillips S. M. Increased muscle oxidative potential following resistance training induced fibre hypertrophy in young men. Applied Physiology, Nutrition and Metabolism. 2006;31(5):495–501. doi: 10.1139/h06-026.
    1. Parise G., Phillips S. M., Kaczor J. J., Tarnopolsky M. A. Antioxidant enzyme activity is up-regulated after unilateral resistance exercise training in older adults. Free Radical Biology & Medicine. 2005;39(2):289–295. doi: 10.1016/j.freeradbiomed.2005.03.024.
    1. Kwong L. K., Sohal R. S. Age-related changes in activities of mitochondrial electron transport complexes in various tissues of the mouse. Archives of Biochemistry and Biophysics. 2000;373(1):16–22. doi: 10.1006/abbi.1999.1495.
    1. Wang X., Pickrell A. M., Rossi S. G., et al. Transient systemic mtDNA damage leads to muscle wasting by reducing the satellite cell pool. Human Molecular Genetics. 2013;22(19):3976–3986. doi: 10.1093/hmg/ddt251.
    1. Pallafacchina G., François S., Regnault B., et al. An adult tissue-specific stem cell in its niche: a gene profiling analysis of in vivo quiescent and activated muscle satellite cells. Stem Cell Research. 2010;4(2):77–91. doi: 10.1016/j.scr.2009.10.003.
    1. Vahidi Ferdousi L., Rocheteau P., Chayot R., et al. More efficient repair of DNA double-strand breaks in skeletal muscle stem cells compared to their committed progeny. Stem Cell Research A. 2014;13(3):492–507. doi: 10.1016/j.scr.2014.08.005.
    1. Taivassalo T., Fu K., Johns T., Arnold D., Karpati G., Shoubridge E. A. Gene shifting: a novel therapy for mitochondrial myopathy. Human Molecular Genetics. 1999;8(6):1047–1052. doi: 10.1093/hmg/8.6.1047.
    1. Schultzand E., McCormick K. M. Skeletal muscle satellite cells. Reviews of Physiology, Biochemistry and Pharmacology. 1994;123:213–257.
    1. Murphy J. L., Blakely E. L., Schaefer A. M., et al. Resistance training in patients with single, large-scale deletions of mitochondrial DNA. Brain. 2008;131(11):2832–2840. doi: 10.1093/brain/awn252.
    1. Spendiff S., Reza M., Murphy J. L., et al. Mitochondrial DNA deletions in musclesatellite cells: implications for therapies. Human Molecular Genetics. 2013;22(23):4739–4747. doi: 10.1093/hmg/ddt327.ddt327
    1. Wang L., Mascher H., Psilander N., Blomstrand E., Sahlin K. Resistance exercise enhances the molecular signaling of mitochondrial biogenesis induced by endurance exercise in human skeletal muscle. Journal of Applied Physiology. 2011;111(5):1335–1344. doi: 10.1152/japplphysiol.00086.2011.
    1. Apró W., Wang L., Pontén M., Blomstrand E., Sahlin K. Resistance exercise induced mTORC1 signaling is not impaired by subsequent endurance exercise in human skeletal muscle. The American Journal of Physiology: Endocrinology and Metabolism. 2013;305(1):E22–E32. doi: 10.1152/ajpendo.00091.2013.
    1. MacNeil L. G., Glover E., Bergstra T. G., Safdar A., Tarnopolsky M. A., Lluch G. L. The order of exercise during concurrent training for rehabilitation does not alter acute genetic expression, mitochondrial enzyme activity or improvements in muscle function. PLoS ONE. 2014;9(10) doi: 10.1371/journal.pone.0109189.e109189
    1. Guescini M., Fatone C., Stocchi L., et al. Fine needle aspiration coupled with real-time PCR: a painless methodology to study adaptive functional changes in skeletal muscle. Nutrition, Metabolism and Cardiovascular Diseases. 2007;17(5):383–393. doi: 10.1016/j.numecd.2007.01.012.
    1. Fatone C., Guescini M., Balducci S., et al. Two weekly sessions of combined aerobic and resistance exercise are sufficient to provide beneficial effects in subjects with type 2 diabetes mellitus and metabolic syndrome. Journal of Endocrinological Investigation. 2010;33(7):489–495. doi: 10.3275/6814.
    1. Turco A. A., Guescini M., Valtucci V., et al. Dietary fat differentially modulate the mRNA expression levels of oxidative mitochondrial genes in skeletal muscle of healthy subjects. Nutrition, Metabolism and Cardiovascular Diseases. 2014;24(2):198–204. doi: 10.1016/j.numecd.2013.07.001.
    1. Olsen S., Aagaard P., Kadi F., et al. Creatine supplementation augments the increase in satellite cell and myonuclei number in human skeletal muscle induced by strength training. The Journal of Physiology. 2006;573, part 2:525–534. doi: 10.1113/jphysiol.2006.107359.
    1. Devries M. C., Phillips S. M. Creatine supplementation during resistance training in older adults—a meta-analysis. Medicine and Science in Sports and Exercise. 2014;46(6):1194–1203. doi: 10.1249/mss.0000000000000220.

Source: PubMed

3
订阅