Benefits of Icosapent Ethyl Across the Range of Kidney Function in Patients With Established Cardiovascular Disease or Diabetes: REDUCE-IT RENAL

Arjun Majithia, Deepak L Bhatt, Allon N Friedman, Michael Miller, Ph Gabriel Steg, Eliot A Brinton, Terry A Jacobson, Steven B Ketchum, Rebecca A Juliano, Lixia Jiao, Ralph T Doyle Jr, Craig Granowitz, Matthew Budoff, R Preston Mason, Jean-Claude Tardif, William E Boden, Christie M Ballantyne, Arjun Majithia, Deepak L Bhatt, Allon N Friedman, Michael Miller, Ph Gabriel Steg, Eliot A Brinton, Terry A Jacobson, Steven B Ketchum, Rebecca A Juliano, Lixia Jiao, Ralph T Doyle Jr, Craig Granowitz, Matthew Budoff, R Preston Mason, Jean-Claude Tardif, William E Boden, Christie M Ballantyne

Abstract

Background: Chronic kidney disease is associated with adverse outcomes among patients with established cardiovascular disease (CVD) or diabetes. Commonly used medications to treat CVD are less effective among patients with reduced kidney function.

Methods: REDUCE-IT (Reduction of Cardiovascular Events with Icosapent Ethyl-Intervention Trial) was a multicenter, double-blind, placebo-controlled trial that randomly assigned statin-treated patients with elevated triglycerides (135-499 mg/dL) who had CVD or diabetes and 1 additional risk factor to treatment with icosapent ethyl (4 g daily) or placebo. Patients from REDUCE-IT were categorized by prespecified estimated glomerular filtration rate (eGFR) categories to analyze the effect of icosapent ethyl on the primary end point (composite of cardiovascular death, nonfatal myocardial infarction, nonfatal stroke, coronary revascularization, or unstable angina) and key secondary end point (a composite of cardiovascular death, nonfatal myocardial infarction, or nonfatal stroke).

Results: Among the 8179 REDUCE-IT patients, median baseline eGFR was 75 mL·min-1·1.73 m-2 (range, 17-123 mL·min-1·1.73 m-2). There were no meaningful changes in median eGFR for icosapent ethyl versus placebo across study visits. Treatment with icosapent ethyl led to consistent reduction in both the primary and key secondary composite end points across baseline eGFR categories. Patients with eGFR <60 mL·min-1·1.73 m-2 treated with icosapent ethyl had the largest absolute and similar relative risk reduction for the primary composite end point (icosapent ethyl versus placebo, 21.8% versus 28.9%; hazard ratio [HR], 0.71 [95% CI, 0.59-0.85]; P=0.0002) and key secondary composite end point (16.8% versus 22.5%; HR 0.71 [95% CI, 0.57-0.88]; P=0.001). The numeric reduction in cardiovascular death was greatest in the eGFR <60 mL·min-1·1.73 m-2 group (icosapent ethyl: 7.6%; placebo: 10.6%; HR, 0.70 [95% CI, 0.51-0.95]; P=0.02). Although patients with eGFR <60 mL·min-1·1.73 m-2 treated with icosapent ethyl had the highest numeric rates of atrial fibrillation/flutter (icosapent ethyl: 4.2%; placebo 3.0%; HR 1.42 [95% CI, 0.86-2.32]; P=0.17) and serious bleeding (icosapent ethyl: 5.4%; placebo 3.6%; HR, 1.40 [95% CI, 0.90-2.18]; P=0.13), HRs for atrial fibrillation/flutter and serious bleeding were similar across eGFR categories (P-interaction for atrial fibrillation/flutter=0.92; P-interaction for serious bleeding=0.76).

Conclusions: In REDUCE-IT, icosapent ethyl reduced fatal and nonfatal ischemic events across the broad range of baseline eGFR categories. REGISTRATION: URL: https://www.clinicaltrials.gov; Unique identifier: NCT01492361.

Keywords: eicosapentaenoic acid ethyl ester; fatty acids; fatty acids, omega-3; lipids; prevention and control; renal insufficiency, chronic; triglycerides.

Figures

Figure 1.
Figure 1.
Kaplan-Meier curves for the primary composite end point by eGFR subgroup.A, Kaplan-Meier curves for the primary composite end point among patients with eGFR <60 mL·min–1·1.73 m–2. B, Kaplan-Meier curves for the primary composite end point among patients with eGFR 60 to <90 mL·min–1·1.73 m–2. C, Kaplan-Meier curves for the primary composite end point among patients with eGFR ≥90 mL·min–1·1.73 m–2. The y axis represents the cumulative incidence rate. Primary composite end point events were cardiovascular death, nonfatal myocardial infarction, nonfatal stroke, coronary revascularization, or hospitalization for unstable angina. Estimated Kaplan-Meier event rate at ≈5.7 years. The curves were visually truncated at 5.7 years because a limited number of events occurred beyond that time point; all patient data were included in the analyses. ARR indicates absolute risk reduction; eGFR, estimated glomerular filtration rate; HR, hazard ratio; NNT, number needed to treat; and RRR, relative risk reduction.
Figure 2.
Figure 2.
Primary and key secondary composite end point event rates by eGFR category. The primary composite end point and key secondary composite event rates by prespecified eGFR categories. eGFR indicates estimated glomerular filtration rate; and HR, hazard ratio.

References

    1. Bhatt DL, Eagle KA, Ohman EM, Hirsch AT, Goto S, Mahoney EM, Wilson PW, Alberts MJ, D’Agostino R, Liau CS, et al. ; REACH Registry Investigators. Comparative determinants of 4-year cardiovascular event rates in stable outpatients at risk of or with atherothrombosis. JAMA. 2010;304:1350–1357. doi: 10.1001/jama.2010.1322
    1. Nambi V, Bhatt DL. Primary prevention of atherosclerosis: time to take a selfie? J Am Coll Cardiol. 2017;70:2992–2994. doi: 10.1016/j.jacc.2017.10.068
    1. Vaduganathan M, Venkataramani AS, Bhatt DL. Moving toward global primordial prevention in cardiovascular disease: the heart of the matter. J Am Coll Cardiol. 2015;66:1535–1537. doi: 10.1016/j.jacc.2015.08.027
    1. Cannon CP, Braunwald E, McCabe CH, Rader DJ, Rouleau JL, Belder R, Joyal SV, Hill KA, Pfeffer MA, Skene AM; Pravastatin or Atorvastatin Evaluation and Infection Therapy-Thrombolysis in Myocardial Infarction 22 Investigators. Intensive versus moderate lipid lowering with statins after acute coronary syndromes. N Engl J Med. 2004;350:1495–1504. doi: 10.1056/NEJMoa040583
    1. Libby P. Triglycerides on the rise: should we swap seats on the seesaw? Eur Heart J. 2015;36:774–776. doi: 10.1093/eurheartj/ehu500
    1. Klempfner R, Erez A, Sagit BZ, Goldenberg I, Fisman E, Kopel E, Shlomo N, Israel A, Tenenbaum A. Elevated triglyceride level is independently associated with increased all-cause mortality in patients with established coronary heart disease: twenty-two-year follow-up of the Bezafibrate Infarction Prevention Study and Registry. Circ Cardiovasc Qual Outcomes. 2016;9:100–108. doi: 10.1161/CIRCOUTCOMES.115.002104
    1. Nichols GA, Philip S, Reynolds K, Granowitz CB, Fazio S. Increased cardiovascular risk in hypertriglyceridemic patients with statin-controlled LDL cholesterol. J Clin Endocrinol Metab. 2018;103:3019–3027. doi: 10.1210/jc.2018-00470
    1. Toth PP, Granowitz C, Hull M, Liassou D, Anderson A, Philip S. High triglycerides are associated with increased cardiovascular events, medical costs, and resource use: a real-world administrative claims analysis of statin-treated patients with high residual cardiovascular risk. J Am Heart Assoc. 2018;7:e008740. doi: 10.1161/JAHA.118.008740
    1. Ganda OP, Bhatt DL, Mason RP, Miller M, Boden WE. Unmet need for adjunctive dyslipidemia therapy in hypertriglyceridemia management. J Am Coll Cardiol. 2018;72:330–343. doi: 10.1016/j.jacc.2018.04.061
    1. Aung T, Halsey J, Kromhout D, Gerstein HC, Marchioli R, Tavazzi L, Geleijnse JM, Rauch B, Ness A, Galan P, et al. ; Omega-3 Treatment Trialists’ Collaboration. Associations of omega-3 fatty acid supplement use with cardiovascular disease risks: meta-analysis of 10 trials involving 77 917 individuals. JAMA Cardiol. 2018;3:225–234. doi: 10.1001/jamacardio.2017.5205
    1. Bowman L, Mafham M, Wallendszus K, Stevens W, Buck G, Barton J, Murphy K, Aung T, Haynes R, Cox J, et al. . Effects of n-3 fatty acid supplements in diabetes mellitus. N Engl J Med. 2018;379:1540–1550. doi: 10.1056/NEJMoa1804989
    1. Bosch J, Gerstein HC, Dagenais GR, Díaz R, Dyal L, Jung H, Maggiono AP, Probstfield J, Ramachandran A, Riddle MC, et al. . n-3 fatty acids and cardiovascular outcomes in patients with dysglycemia. N Engl J Med. 2012;367:309–18. doi: 10.1056/NEJMoa1203859
    1. Skulas-Ray AC, Wilson PWF, Harris WS, Brinton EA, Kris-Etherton PM, Richter CK, Jacobson TA, Engler MB, Miller M, Robinson JG, et al. American Heart Association Council on Arteriosclerosis, Thrombosis and Vascular Biology; Council on Lifestyle and Cardiometabolic Health; Council on Cardiovascular Disease in the Young; Council on Cardiovascular and Stroke Nursing; and Council on Clinical Cardiology. Omega-3 fatty acids for the management of hypertriglyceridemia: a science advisory from the American Heart Association. Circulation. 2019;140:e673–e691. doi: 10.1161/CIR.0000000000000709
    1. Bhatt DL, Steg PG, Brinton EA, Jacobson TA, Miller M, Tardif JC, Ketchum SB, Doyle RT, Jr, Murphy SA, Soni PN, et al. ; REDUCE-IT Investigators. Rationale and design of REDUCE-IT: Reduction of Cardiovascular Events with Icosapent Ethyl-Intervention Trial. Clin Cardiol. 2017;40:138–148. doi: 10.1002/clc.22692
    1. Bhatt DL, Steg PG, Miller M, Brinton EA, Jacobson TA, Ketchum SB, Doyle RT, Jr, Juliano RA, Jiao L, Granowitz C, et al. ; REDUCE-IT Investigators. Cardiovascular risk reduction with icosapent ethyl for hypertriglyceridemia. N Engl J Med. 2019;380:11–22. doi: 10.1056/NEJMoa1812792
    1. Bhatt DL, Steg PG, Miller M, Brinton EA, Jacobson TA, Ketchum SB, Doyle RT, Jr, Juliano RA, Jiao L, Granowitz C, et al. ; REDUCE-IT Investigators. Effects of icosapent ethyl on total ischemic events: from REDUCE-IT. J Am Coll Cardiol. 2019;73:2791–2802. doi: 10.1016/j.jacc.2019.02.032
    1. Bhatt DL, Miller M, Brinton EA, Jacobson TA, Steg PG, Ketchum SB, Doyle RT, Jr, Juliano RA, Jiao L, Granowitz C, et al. ; REDUCE-IT Investigators. REDUCE-IT USA: results from the 3146 patients randomized in the United States. Circulation. 2020;141:367–375. doi: 10.1161/CIRCULATIONAHA.119.044440
    1. Peterson BE, Bhatt DL, Steg PG, Miller M, Brinton EA, Jacobson TA, Ketchum SB, Juliano RA, Jiao L, Doyle RT, Jr, et al. ; REDUCE-IT Investigators. Reduction in revascularization with icosapent ethyl: insights from REDUCE-IT revascularization analyses. Circulation. 2021;143:33–44. doi: 10.1161/CIRCULATIONAHA.120.050276
    1. Wang X, Verma S, Mason RP, Bhatt DL. The road to approval: a perspective on the role of icosapent ethyl in cardiovascular risk reduction. Curr Diab Rep. 2020;20:65. doi: 10.1007/s11892-020-01343-7
    1. Olshansky B, Bhatt DL, Miller M, Steg PG, Brinton EA, Jacobson TA, Ketchum SB, Doyle RT, Jr, Juliano RA, Jiao L, et al. ; REDUCE-IT Investigators. REDUCE-IT INTERIM: accumulation of data across prespecified interim analyses to final results. Eur Heart J Cardiovasc Pharmacother. 2021;7:e61–e63. doi: 10.1093/ehjcvp/pvaa118
    1. Konstantinidis I, Nadkarni GN, Yacoub R, Saha A, Simoes P, Parikh CR, Coca SG. Representation of patients with kidney disease in trials of cardiovascular interventions: an updated systematic review. JAMA Intern Med. 2016;176:121–124. doi: 10.1001/jamainternmed.2015.6102
    1. Go AS, Chertow GM, Fan D, McCulloch CE, Hsu CY. Chronic kidney disease and the risks of death, cardiovascular events, and hospitalization. N Engl J Med. 2004;351:1296–1305. doi: 10.1056/NEJMoa041031
    1. Palmer SC, Craig JC, Navaneethan SD, Tonelli M, Pellegrini F, Strippoli GF. Benefits and harms of statin therapy for persons with chronic kidney disease: a systematic review and meta-analysis. Ann Intern Med. 2012;157:263–275. doi: 10.7326/0003-4819-157-4-201208210-00007
    1. Charytan D, Kuntz RE. The exclusion of patients with chronic kidney disease from clinical trials in coronary artery disease. Kidney Int. 2006;70:2021–2030. doi: 10.1038/sj.ki.5001934
    1. Baigent C, Landray MJ, Reith C, Emberson J, Wheeler DC, Tomson C, Wanner C, Krane V, Cass A, Craig J, et al. ; SHARP Investigators. The effects of lowering LDL cholesterol with simvastatin plus ezetimibe in patients with chronic kidney disease (Study of Heart and Renal Protection): a randomised placebo-controlled trial. Lancet. 2011;377:2181–2192. doi: 10.1016/S0140-6736(11)60739-3
    1. Wanner C, Krane V, März W, Olschewski M, Mann JF, Ruf G, Ritz E; German Diabetes and Dialysis Study Investigators. Atorvastatin in patients with type 2 diabetes mellitus undergoing hemodialysis. N Engl J Med. 2005;353:238–248. doi: 10.1056/NEJMoa043545
    1. Palmer SC, Di Micco L, Razavian M, Craig JC, Perkovic V, Pellegrini F, Copetti M, Graziano G, Tognoni G, Jardine M, et al. . Effects of antiplatelet therapy on mortality and cardiovascular and bleeding outcomes in persons with chronic kidney disease: a systematic review and meta-analysis. Ann Intern Med. 2012;156:445–459. doi: 10.7326/0003-4819-156-6-201203200-00007
    1. Fellström BC, Jardine AG, Schmieder RE, Holdaas H, Bannister K, Beutler J, Chae DW, Chevaile A, Cobbe SM, Grönhagen-Riska C, et al. ; AURORA Study Group. Rosuvastatin and cardiovascular events in patients undergoing hemodialysis. N Engl J Med. 2009;360:1395–1407. doi: 10.1056/NEJMoa0810177
    1. Svensson M, Schmidt EB, Jørgensen KA, Christensen JH; OPACH Study Group. N-3 fatty acids as secondary prevention against cardiovascular events in patients who undergo chronic hemodialysis: a randomized, placebo-controlled intervention trial. Clin J Am Soc Nephrol. 2006;1:780–786. doi: 10.2215/CJN.00630206
    1. Lok CE, Moist L, Hemmelgarn BR, Tonelli M, Vazquez MA, Dorval M, Oliver M, Donnelly S, Allon M, Stanley K; Fish Oil Inhibition of Stenosis in Hemodialysis Grafts (FISH) Study Group. Effect of fish oil supplementation on graft patency and cardiovascular events among patients with new synthetic arteriovenous hemodialysis grafts: a randomized controlled trial. JAMA. 2012;307:1809–1816. doi: 10.1001/jama.2012.3473
    1. Friedman AN, Yu Z, Tabbey R, Denski C, Tamez H, Wenger J, Thadhani R, Li Y, Watkins BA. Inverse relationship between long-chain n-3 fatty acids and risk of sudden cardiac death in patients starting hemodialysis. Kidney Int. 2013;83:1130–1135. doi: 10.1038/ki.2013.4

Source: PubMed

3
订阅