Impact of Age on tDCS Effects on Pain Threshold and Working Memory: Results of a Proof of Concept Cross-Over Randomized Controlled Study

Júlia Schirmer Saldanha, Maxciel Zortea, Cibely Bavaresco Deliberali, Michael A Nitsche, Min-Fang Kuo, Iraci Lucena da Silva Torres, Felipe Fregni, Wolnei Caumo, Júlia Schirmer Saldanha, Maxciel Zortea, Cibely Bavaresco Deliberali, Michael A Nitsche, Min-Fang Kuo, Iraci Lucena da Silva Torres, Felipe Fregni, Wolnei Caumo

Abstract

Background: Age is an important factor that impacts the variability of tDCS effects. Objective/Hypothesis: To compare effects of anodal (a)-tDCS over the left dorsolateral prefrontal cortex (DLPFC), and primary motor cortex (M1) in adolescents, adults, and elderly on heat pain threshold (HPT; primary outcome) and the working memory (WM; secondary outcome). We hypothesized that the effect of tDCS on HPT and WM performance would be the largest in adolescents because their pre-frontal cortex is more prone to neuroplasticity. Methods: We included 30 healthy women within the age ranges of 15-16 (adolescents, n = 10), 30-40 (adults, n = 10), and 60-70 (elderly, n = 10) years. In this crossover single-blinded study, participants received three interventions applied over the DLPF and M1. The active stimulation intensity was two mA for 30 min. From 20 min of stimulation onset, the tDCS session was coupled with an online n-back task. The a-tDCS and sham were applied in a random sequence, with a washout time of a minimum 7 days between each trial. HPT was evaluated before and after stimulation. The WM performance with an n-back task was assessed after the tDCS session. Results: A Generalized Estimating Equation (GEE) model revealed a significant effect of the a-tDCS over the left DLPFC to reduce the HPT in adolescents compared with sham. It increased the pain perception significantly [a large effect size (ES) of 1.09)]. In the adults, a-tDCS over M1 enhanced the HPT significantly (a large ES of 1.25) compared to sham. No significant effect for HPT was found in the elderly. Response time for hits was reduced for a-tDCS over the DLPFC in adolescents, as compared to the other two age groups. Conclusions: These findings suggest that a-tDCS modulates pain perception and WM differentially according to age and target area of stimulation. In adolescents, anodal stimulation over the DLPFC increased the pain perception, while in adults, the stimulation over the M1 increased the pain threshold. Thus, they elucidate the impact of tDCS for different age groups and can help to define what is the appropriate intervention according to age in further clinical trials. Clinical Trial Registration: www.ClinicalTrials.gov, Identifier: NCT04328545.

Keywords: adolescents; age; elderly; heat pain threshold; quantitative sensory testing; transcranial direct current stimulation (tDCS); working memory.

Copyright © 2020 Saldanha, Zortea, Deliberali, Nitsche, Kuo, Torres, Fregni and Caumo.

Figures

Figure 1
Figure 1
(A) Experimental protocol timeline. Baseline questionnaires included the Beck Depression Inventory II (BDI-11), Pittsburgh Sleep Quality Index (PSQI), State-Trait Anxiety Inventory (STAI), and a standardized demographic questionnaire. (B) Scheme depicting a 2-back task stimuli sequence with congruent and incongruent flankers. (C) tDCS montage for dorsolateral prefrontal cortex (DLPFC), Sham and primary motor cortex (M1), the red dot represents the anode electrode, and the black dot the cathode electrode. QST = Quantitative Sensory Test.
Figure 2
Figure 2
CONSORT participants flow.
Figure 3
Figure 3
tDCS-driven heat pain threshold (HPT) alterations in the different age groups. Asterisks indicate statistical significance (P < 0.05). Error bars represent standard error of means (SEM).
Figure 4
Figure 4
D prime and RTH at the n-back task conducted after the stimulation. Asterisks indicate statistical significance (P < 0.05). Error bars represent SEM. Brackets represent the main effect of age group differences.

References

    1. Apkarian A. V., Bushnell M. C., Treede R. D., Zubieta J. K. (2005). Human brain mechanisms of pain perception and regulation in health and disease. Eur. J. Pain 9, 463–484. 10.1016/j.ejpain.2004.11.001
    1. Barnes C. A. (1979). Memory deficits associated with senescence: a neurophysiological and behavioral study in the rat. J. Comp. Physiol. Psychol. 93, 74–104. 10.1037/h0077579
    1. Bartley E. J., Fillingim R. B. (2013). Sex differences in pain: a brief review of clinical and experimental findings. Br. J. Anaesth. 111, 52–58. 10.1093/bja/aet127
    1. Bertolazi A. N., Fagondes S. C., Hoff L. S., Dartora E. G., da Silva Miozzo I. C., de Barba M. E. F., et al. . (2011). Validation of the Brazilian Portuguese version of the pittsburgh sleep quality index. Sleep Med. 12, 70–75. 10.1016/j.sleep.2010.04.020
    1. Boggio P. S., Zaghi S., Lopes M., Fregni F. (2008). Modulatory effects of anodal transcranial direct current stimulation on perception and pain thresholds in healthy volunteers. Eur. J. Neurol. 15, 1124–1130. 10.1111/j.1468-1331.2008.02270.x
    1. Brietzke A. P., Zortea M., Carvalho F., Sanches P. R. S., Silva D. P. J., da Silva Torres I. L., et al. . (2019). Large treatment effect with extended home-based transcranial direct current stimulation over dorsolateral prefrontal cortex in fibromyalgia: a proof of concept sham-randomized clinical study. J. Pain [Epub ahead of print]. 10.1016/j.jpain.2019.06.013
    1. Brunoni A. R., Vanderhasselt M. (2014). Working memory improvement with non-invasive brain stimulation of the dorsolateral prefrontal cortex: a systematic review and meta-analysis. Brain Cogn. 86, 1–9. 10.1016/j.bandc.2014.01.008
    1. Croarkin P. E., Nakonezny P. A., Lewis C. P., Zaccariello M. J., Huxsahl J. E., Husain M. M., et al. . (2014). Developmental aspects of cortical excitability and inhibition in depressed and healthy youth: an exploratory study. Front. Hum. Neurosci. 8:669. 10.3389/fnhum.2014.00669
    1. da Graca-Tarragó M., Lech M., Angoleri L. D. M., Santos D. S., Deitos A., Brietzke A. P., et al. . (2019). Intramuscular electrical stimulus potentiates motor cortex modulation effects on pain and descending inhibitory systems in knee osteoarthritis: a randomized, factorial, sham-controlled study. J. Pain Res. 12, 209–221. 10.2147/jpr.s181019
    1. Dedoncker J., Brunoni A. R., Baeken C., Vanderhasselt M. (2016). A systematic review and meta-analysis of the effects of transcranial direct current stimulation (tDCS) over the dorsolateral prefrontal cortex in healthy and neuropsychiatric samples: influence of stimulation parameters. Brain Stimul. 9, 501–517. 10.1016/j.brs.2016.04.006
    1. Dum R. P., Levinthal D. J., Strick P. L. (2009). The spinothalamic system targets motor and sensory areas in the cerebral cortex of monkeys. J. Neurosci. 29, 14223–14235. 10.1523/JNEUROSCI.3398-09.2009
    1. Emonson M. R. L., Fitzgerald P. B., Rogasch N. C., Hoy K. E. (2019). neurobiological effects of transcranial direct current stimulation in yunger adults, older adults and mild cognitive impairment. Neuropsychologia 125, 51–61. 10.1016/j.neuropsychologia.2019.01.003
    1. Fertonani A., Miniussi C. (2017). Transcranial electrical stimulation: what we know and do not know about mechanisms. Neuroscientist 23, 109–123. 10.1177/1073858416631966
    1. Fregni F., Boggio P. S., Nitsche M., Bermpohl F., Antal A., Feredoes E., et al. . (2005). Anodal transcranial direct current stimulation of prefrontal cortex enhances working memory. Exp. Brain Res. 166, 23–30. 10.1007/s00221-005-2334-6
    1. Freitas C., Farzan F., Pascual-Leone A. (2013). Assessing brain plasticity across the lifespan with transcranial magnetic stimulation: why, how, and what is the ultimate goal?. Front. Neurosci. 7:42. 10.3389/fnins.2013.00042
    1. Fujiyama H., Hyde J., Hinder M. R., Kim S. J., McCormack G. H., Vickers J. C., et al. . (2014). Delayed plastic responses to anodal tDCS in older adults. Front. Aging Neurosci. 6:115. 10.3389/fnagi.2014.00115
    1. Fuster J. M. (2008). The Prefrontal Cortex. 4th Edn. San Diego, CA: Academic Press.
    1. Gasparin A., Zortea M., Dos Santos V. S., Carvalho F., Torres I. L. S., de Souza A., et al. . (2020). Brain-derived neurotrophic factor modulates the effect of sex on the descending pain modulatory system in healthy volunteers. Pain Med. [Epub ahead of print]. 10.1093/pm/pnaa027
    1. Gewandter J. S., Dworkin R. H., Turk D. C., McDermott M. P., Baron R., Gastonguay M. R., et al. . (2014). Research designs for proof-of-concept chronic pain clinical trials: IMMPACT recommendations. Pain 155, 1683–1695. 10.1016/j.pain.2014.05.025
    1. Gill J., Shah-basak P. P., Hamilton R. (2015). It’s the thought that counts: examining the task-dependent effects of transcranial direct current stimulation on executive function. Brain Stimul. 8, 253–259. 10.1016/j.brs.2014.10.018
    1. Gomes-Oliveira M. H., Gorenstein C., Neto F. L., Andrade L. H., Wang Y. P. (2012). Validation of the Brazilian Portuguese version of the beck depression inventory-II in a community sample. Braz. J. Psychiatry 34, 389–394. 10.1016/j.rbp.2012.03.005
    1. Graff-Guerrero A., Gonzalez-Olvera J., Fresan A., Gomez-Martin D., Mendez-Nunez J. C., Pellicer F. (2005). Repetitive transcranial magnetic stimulation of dorsolateral prefrontal cortex increases tolerance to human experimental pain. Cogn. Brain Res. 25, 153–160. 10.1016/j.cogbrainres.2005.05.002
    1. Gupta A., Mayer E. A., Fling C., Labus J. S., Naliboff B. D., Hong J.-Y., et al. . (2017). Sex-based differences in brain alterations across chronic pain conditions. J. Neurosci. Res. 95, 604–616. 10.1002/jnr.23856
    1. Harvey M.-P., Lorrain D., Martel M., Bergeron-Vezina K., Houde F., Séguin M., et al. . (2017). Can we improve pain and sleep in elderly individuals with transcranial direct current stimulation? - Results from a randomized controlled pilot study. Clin. Interv. Aging 12, 937–947. 10.2147/cia.s133423
    1. Higgins J. P. T., Altman D. G., Gøtzsche P. C., Jüni P., Moher D., Oxman A. D., et al. . (2011). The Cochrane Collaboration’s tool for assessing risk of bias in randomised trials. BMJ 343:d5928. 10.1136/bmj.d5928
    1. Hill A. T., Fitzgerald P. B., Hoy K. E. (2016). Effects of anodal transcranial direct current stimulation on working memory: a systematic review and meta-analysis of findings from healthy and neuropsychiatric populations. Brain Stimul. 9, 197–208. 10.1016/j.brs.2015.10.006
    1. Hsu T.-Y., Juan C.-H., Tseng P. (2016). Individual differences and state-dependent responses in transcranial direct current stimulation. Front. Hum. Neurosci. 10:643. 10.3389/fnhum.2016.00643
    1. Kaipper M. B., Chachamovich E., Hidalgo M. P. L., da Silva Torres I. L., Caumo W. (2010). Evaluation of the structure of Brazilian state-trait anxiety inventory using a Rasch psychometric approach. J. Psychosom. Res. 68, 223–233. 10.1016/j.jpsychores.2009.09.013
    1. Kirova A. M., Bays R. B., Lagalwar S. (2015). Working memory and executive function decline across normal aging, mild cognitive impairment, and Alzheimer’s disease. Biomed Res Int. 2015:748212 10.1155/2015/748212
    1. Kochan N., Kochan N. A., Breakspear M., Slavin M. J., Valenzuela M., McCraw S., et al. . (2010). Functional alterations in brain activation and deactivation in mild cognitive impairment in response to a graded working memory challenge. Dement. Geriatr. Cogn. Disord. 30, 553–568. 10.1159/000322112
    1. Kuo M.-F., Paulus W., Nitsche M. A. (2006). Sex differences in cortical neuroplasticity in humans. Neuroreport 17, 1703–1707. 10.1097/01.wnr.0000239955.68319.c2
    1. Lee S., Chung S. W., Rogasch N. C., Thomson C. J., Worsley R. N., Kulkarni J., et al. . (2018). The influence of endogenous estrogen on transcranial direct current stimulation: a preliminary study. Eur. J. Neurosci. 48, 2001–2012. 10.1111/ejn.14085
    1. Lorenz J., Minoshima S., Casey K. L. (2003). Keeping pain out of mind: the role of the dorsolateral prefrontal cortex in pain modulation. Brain 126, 1079–1091. 10.1093/brain/awg102
    1. Mahdavi S., Towhidkhah F., Alzheimer’s Disease Neuroimaging Initiative . (2018). Computational human head models of tDCS: influence of brain atrophy on current density distribution. Brain Stimul. 11, 104–107. 10.1016/j.brs.2017.09.013
    1. Mancuso L. E., Ilieva I. P., Hamilton R. H., Farah M. J. (2016). Does transcranial direct current stimulation improve healthy working memory? A meta-analytic review. J. Cogn. Neurosci. 28, 1063–1089. 10.1162/jocn_a_00956
    1. Mashal N., Metzuyanim-Gorelick S. (2019). New information on the effects of transcranial direct current stimulation on n-back task performance. Exp. Brain Res. 237, 1315–1324. 10.1007/s00221-019-05500-7
    1. Mills E. J., Chan A.-W., Wu P., Vail A., Guyatt G. H., Altman D. G. (2009). Design, analysis, and presentation of crossover trials. Trials 10:27. 10.1186/1745-6215-10-27
    1. Minhas P., Bikson M., Woods A., Rosen A. R., Kessler S. (2013). Transcranial direct current stimulation in pediatric brain: a computational modeling study. Conf. Proc. IEEE Eng. Med. Biol. Soc. 2012, 859–862. 10.1109/EMBC.2012.6346067
    1. Moliadze V., Schmanke T., Andreas S., Lyzhko E., Freitag C. M., Siniatchkin M. (2015). Stimulation intensities of transcranial direct current stimulation have to be adjusted in children and adolescents. Clin. Neurophysiol. 126, 1392–1399. 10.1016/j.clinph.2014.10.142
    1. Monte-Silva K., Kuo M. F., Hessenthaler S., Fresnoza S., Liebetanz D., Paulus W., et al. . (2013). Induction of late LTP-like plasticity in the human motor cortex by repeated non-invasive brain stimulation. Brain Stimul. 6, 424–432. 10.1016/j.brs.2012.04.011
    1. Morton D. L., Sandhu J. S., Jones A. K. P. (2016). Brain imaging of pain: state of the art. J. Pain Res. 9, 613–624. 10.2147/jpr.s60433
    1. Mylius V., Jung M., Menzler K., Haag A., Khader P. H., Oertel W. H., et al. . (2012). Effects of transcranial direct current stimulation on pain perception and working memory. Eur. J. Pain 16, 974–982. 10.1002/j.1532-2149.2011.00105.x
    1. Nitsche M. A., Cohen L. G., Wassermann E. M., Priori A., Lang N., Antal A., et al. . (2008). Transcranial direct current stimulation: state of the art 2008. Brain Stimul. 1, 206–223. 10.1016/j.brs.2008.06.004
    1. Nitsche M. A., Paulus W. (2000). Excitability changes induced in the human motor cortex by weak transcranial direct current stimulation. J. Physiol. 527, 633–639. 10.1111/j.1469-7793.2000.t01-1-00633.x
    1. O’Brien P. C., Fleming T. R. (1979). A multiple testing procedure for clinical trials. Biometrics 35, 549–556.
    1. Ohn S. H., Park C.-I., Yoo W.-K., Ko M.-H., Choi K. P., Kim G.-M., et al. . (2008). Time-dependent effect of transcranial direct current stimulation on the enhancement of working memory. Cogn. Neurosci. Neuropsychol. 19, 43–47. 10.1097/WNR.0b013e3282f2adfd
    1. Reidler J. S., Mendonca M. E., Santana M. B., Wang X., Lenkinski R., Motta A. F., et al. . (2012). Effects of motor cortex modulation and descending inhibitory systems on pain thresholds in healthy subjects. J. Pain 13, 450–458. 10.1016/j.jpain.2012.01.005
    1. Resnick S. M., Pham D. L., Kraut M. A., Zonderman A. B., Davatzikos C. (2003). Longitudinal magnetic resonance imaging studies of older adults: a shrinking brain. J. Neurosci. 23, 3295–3301. 10.1523/jneurosci.23-08-03295.2003
    1. Rex C. S., Kramar E. A., Colgin L. L., Lin B., Gall C. M., Lynch G. (2005). Long-term potentiation is impaired in middle-aged rats: regional specificity and reversal by adenosine receptor antagonists. J. Neurosci. 25, 5956–5966. 10.1523/jneurosci.0880-05.2005
    1. Ridding M. C., Ziemann U. (2010). Determinants of the induction of cortical plasticity by non-invasive brain stimulation in healthy subjects. J. Physiol. 588, 2291–2304. 10.1113/jphysiol.2010.190314
    1. Sachdev P. S., Lipnicki D. M., Kochan N. A., Crawford J. D., Thalamuthu A. (2015). The Prevalence of Mild Cognitive Impairment in Diverse Geographical and Ethnocultural Regions: The COSMIC Collaboration. PLos One 10: e0142388 10.10.1371/journal.pone.0142388
    1. Scharinger C., Soutschek A., Schubert T., Gerjets P. (2015). When flanker meets the n-back: what EEG and pupil dilation data reveal about the interplay between the two central-executive working memory functions inhibition and updating. Psychophysiology 52, 1293–1304. 10.1111/psyp.12500
    1. Schestatsky P., Stefani L. C., Sanches P. R., da Silva Júnior D. P., Torres I. L. S., Dall-Agnol L., et al. . (2011). Validation of a Brazilian quantitative sensory testing (QST) device for the diagnosis of small fiber neuropathies. Arq. Neuropsiquiatr. 69, 943–948. 10.1590/s0004-282x2011000700019
    1. Soff C., Sotnikova A., Christiansen H., Becker K., Siniatchkin M. (2017). Transcranial direct current stimulation improves clinical symptoms in adolescents with attention deficit hyperactivity disorder. J. Neural Transm. 124, 133–144. 10.1007/s00702-016-1646-y
    1. Sowell E. R., Thompson P. M., Toga A. W. (2004). Mapping changes in the human cortex throughout the span of life. Neuroscientist 10, 372–392. 10.1177/1073858404263960
    1. Teixeira-Santos A. C., Nafee T., Sampaio A., Leite J., Carvalho S. (2015). Effects of transcranial direct current stimulation on working memory in healthy older adults: a systematic review. Princ. Pract. Clin. Res. J. 1, 10.21801/ppcrj.2015.13.5
    1. Vaseghi B., Zoghi M., Jaberzadeh S. (2014). Does anodal transcranial direct current stimulation modulate sensory perception and pain? A meta-analysis study. Clin. Neurophysiol. 125, 1847–1858. 10.1016/j.clinph.2014.01.020
    1. Zandieh A., Parhizgar S. E., Fakhri M., Taghvaei M., Miri S., Shahbabaie A., et al. . (2013). Modulation of cold pain perception by transcranial direct current stimulation in healthy individuals. Neuromodulation 16, 345–348; discussion 348. 10.1111/ner.12009
    1. Zortea M., Ramalho L., Alves R. L., da Alves C. F. S., Braulio G., da Torres I. L. S., et al. . (2019). Transcranial direct current stimulation to improve the dysfunction of descending pain modulatory system related to opioids in chronic non-cancer pain: an integrative review of neurobiology and meta-analysis. Front. Neurosci. 13:1218. 10.3389/fnins.2019.01218

Source: PubMed

3
订阅