Spatial overlaps in the distribution of HIV/AIDS and malaria in Zimbabwe

Isaiah Gwitira, Amon Murwira, Joseph Mberikunashe, Mhosisi Masocha, Isaiah Gwitira, Amon Murwira, Joseph Mberikunashe, Mhosisi Masocha

Abstract

Background: In most developing economies particularly in Africa, more people are likely to die of HIV/AIDS and malaria compared to other diseases. HIV/AIDS tends to be superimposed on the long standing malaria burden particularly in sub-Saharan Africa. The detection and understanding of spatial overlaps in disease occurrence is important for integrated and targeted disease control. Integrated disease control can enhance efficiency and cost-effectiveness through the development of drugs targeting multiple infections in the same geographic space.

Methods: Using Zimbabwe as a case study, this study tests the hypothesis that malaria clusters coincide with HIV/AIDS clusters in space. Case data for the two diseases were obtained from the Ministry of Health and Child Care in Zimbabwe at district level via the District Health Information System (DHIS). Kulldorff's spatial scan statistic was used to test for spatial overlaps in clusters of high cases of HIV/AIDS and malaria at district level. The spatial scan test was used to identify areas with higher cases of HIV/AIDS and malaria than would be expected under spatial randomness.

Results: Results of this study indicate that primary clusters of HIV/AIDS and malaria were not spatially coincident in Zimbabwe. While no spatial overlaps were detected between primary clusters of the two diseases, spatial overlaps were detected among statistically significant secondary clusters of HIV/AIDS and malaria. Spatial overlaps between HIV/AIDS and malaria occurred in five districts in the northern and eastern regions of Zimbabwe. In addition, findings of this study indicate that HIV/AIDS is more widespread in Zimbabwe compared to malaria.

Conclusions: The results of this study may therefore be used as a basis for spatially-targeted control of HIV/AIDS and malaria particularly in high disease burden areas. This is important as previous interventions have targeted the two diseases separately. Thus, targeted control could assist in resource allocation through prioritising areas in greatest need hence maximising the impact of disease control.

Keywords: Disease clusters; GIS; HIV/AIDS; Malaria; SaTscan; Spatial overlap.

Conflict of interest statement

Ethics approval and consent to participate

Although human data was used in this study, it was only the aggregate total not individual subjects therefore “Not applicable”.

Consent for publication

Not applicable.

Competing interests

The authors declare that they have no competing interests.

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Figures

Fig. 1
Fig. 1
Spatial distribution of annual (a) HIV/AIDS and (b) Malaria prevalence per 1000 of the population in Zimbabwe in 2016
Fig. 2
Fig. 2
Distribution of HIV/AIDS and malaria primary and secondary clusters and their relative risk in Zimbabwe. Black Circles indicate HIV/AIDS clusters while the red circles indicate malaria clusters. Districts with hatching pattern indicate areas in which HIV/AIDS and malaria overlap in space. The letters h and m on the cluster numbers indicate HIV/AIDS and malaria clusters, respectively. RR denotes reletive risk

References

    1. Barley KD, Murillo S, Roudenko AM. Tameru, Tatum S. A mathematical model of HIV and malaria co-infection in sub-Saharan Africa. Journal of AIDS Clinic Research 2012;3(173):doi:10.4172/2155-6113.1000173.
    1. Kharsany ABM, Karim QA. HIV infection and AIDS in sub-Saharan Africa: current status, challenges and opportunities. Open AIDS Journal. 2016;10:34–48. doi: 10.2174/1874613601610010034.
    1. Dewald JR, Fuller DO, Müller GC, Beier JC. A novel method for mapping village-scale outdoor resting microhabitats of the primary African malaria vector, Anopheles gambiae. Malar J. 2016;15(489):1–12.
    1. World Health Organization (WHO) World Malaria Report 2017. Geneva: WHO; 2017.
    1. Abu-Raddad LJ, Patnaik P, Kublin JG. Dual infection with HIV and malaria fuels the spread of both diseases in sub-Saharan Africa. Science. 2006;314:1603–1605. doi: 10.1126/science.1132338.
    1. UNICEF. Strategic framework for the Prev Control of HIV/AIDS and STI’s Within Somali Population. Nairobi: English Press Limited; 2003.
    1. Kwenti TE. Malaria and HIV coinfection in sub-Saharan Africa: prevalence, impact, and treatment strategies. Research and Reports in Tropical Medicine. 2018;9:123–136. doi: 10.2147/RRTM.S154501.
    1. Reithinger RMR, Kamya CJM, Whitty G, Dorsey VSH. Interaction of malaria and HIV in Africa. BMJ. 2009. 10.1136/bmj.b214.
    1. Franke MF, Spiegelman D, Ezeamama A. Malaria parasitaemia and CD4 T cell count, viral load and adverse HIV outcomes among HIV-infected pregnant women in Tanzania. Am J Trop Med Hyg. 2010;82(4):556–562. doi: 10.4269/ajtmh.2010.09-0477.
    1. Nyabadza F., Bekele B. T., Rúa M. A., Malonza D. M., Chiduku N., Kgosimore M. The Implications of HIV Treatment on the HIV-Malaria Coinfection Dynamics: A Modeling Perspective. BioMed Research International. 2015;2015:1–14. doi: 10.1155/2015/659651.
    1. David AM, Mercado SP, Becker D, Edmundo K, Mugisha F. The prevention and control of HIV/AIDS, TB and vector-borne diseases in informal settlements: challenges, opportunities and insights. J Urban Health. 2007;84(Suppl 1):65–74. doi: 10.1007/s11524-007-9183-5.
    1. Manyangadze T, Chimbari MJ, Macherera M, Mukaratirwa S. Micro-spatial distribution of malaria cases and control strategies at ward level in Gwanda district, Matabeleland SouthZimbabwe. Malaria Journal. 2017;16(476). 10.1186/s12936-017-2116.
    1. Alemu A, Shiferaw Y, Addis Z, Mathewos B, Birhan W. Effect of malaria on HIV/AIDS transmission and progression. Parasit Vectors. 2013;6(18):1–8.
    1. Bastos FI, Barcellos C, Lowndes SM, Friedman SR. Co-infection with malaria and HIV in injecting drug users in Brazil: a new challenge to public health. Addiction. 1999;94(8):1165–1174. doi: 10.1046/j.1360-0443.1999.94811656.x.
    1. Chirenda J, Siziya S, Tshimanga M. Association of HIV infection with the development of severe and complicated malaria cases at a rural hospital in Zimbabwe. Cent Afr J Med. 2000;46:5–9.
    1. Lagarde E, Congo Z, Meda N, Baya B, Yaro S, Sangli G. Epidemiology of HIV infection in urban Burkina Faso. Int J STD AIDS. 2004;15:395–402. doi: 10.1258/095646204774195254.
    1. Herrero MD, Rivas P, Rallon N, Ramirez-Olivencia G, Puente S. HIV and malaria. AIDS Rev. 2007;9:88–98.
    1. Alemu K, Worku A, Berhane Y. Malaria infection has spatial, temporal, and spatiotemporal heterogeneity in unstable malaria transmission areas in Northwest Ethiopia. PLoS One. 2013;8(11):e79966. doi: 10.1371/journal.pone.0079966.
    1. Cuadros DF, Awad SF, Abu-Raddad LJ. Mapping HIV clustering: a strategy for identifying populations at high risk of HIV infection in sub-Saharan Africa. Int J Health Geogr. 2013;12(28):1–9.
    1. Cuadros DF, Abu-Raddad LJ. Spatial variability in HIV prevalence declines in several countries in sub-Saharan Africa. Health &Place. 2014;28:45–49. doi: 10.1016/j.healthplace.2014.03.007.
    1. Clements ACA, Marie-Alice D, Ndayishimiye O, Brooker S, Fenwick A. Spatial co-distribution of neglected tropical diseases in the east African Great Lakes region: revisiting the justification for integrated control. Trop Med Int Health. 2010;15(2):198–207. doi: 10.1111/j.1365-3156.2009.02440.x.
    1. Pullan RL, Sturrock HJW, Magalhaes RJS, Clements ACA, Brooker SJ. Spatial parasite ecology and epidemiology: a review of methods and applications. Parasitology. 2012;139(14):1870–1887. doi: 10.1017/S0031182012000698.
    1. World Health Organization (WHO) Technical Consultation on Malaria and HIV and their Interactions and Public Health Policy Implications. Geneva: WHO; 2004.
    1. Wumba RD, Zanga J, Aloni MN, Mbanzulu K, Kahindo A, Mandina MN, Ekila MB, Mouri O, Kendjo E. Interactions between malaria and HIV infections in pregnant women: a first report of the magnitude, clinical and laboratory features, and predictive factors in Kinshasa the Democratic Republic of Congo. Malaria Journal. 2015;14(82):1–11.
    1. World Health Organisation (WHO) Report of the first meeting of WHO Strategic and Technical Advisory Group on Neglected Tropical Diseases. Geneva: WHO; 2007.
    1. Gwitira I, Murwira A, Zengeya FM, Shekede MD. Application of GIS to predict malaria hotspots based on Anopheles arabiensis habitat suitability in southern Africa. Int J Appl Earth Obs Geoinformation. 2018;64:12–21. doi: 10.1016/j.jag.2017.08.009.
    1. Wiwatnitkit V. Co-infection between TB and malaria: a consideration on interaction of molecules and pathogenesis. Journal of vector-borne diseases. 2006;43:195–197.
    1. Kulldorff M, Nagarwalla N. Spatial disease clusters: detection and inference. Stat Med. 1995;14(8):799–810. doi: 10.1002/sim.4780140809.
    1. Adjuik M, Smith T, Clark S, Todd J, Gamb A, Kinfu Y, Kahn K, Mola M. Cause specific mortality rates in sub-Saharan Africa and Bangladesh. Bulletin of World Health Organisation. 2006;84(3):1–17.
    1. Cuadros DF, Branscum AJ, Crowley PH. HIV-malaria co-infection: effects of malaria on the prevalence of HIV in east sub-Saharan Africa. Int J Epidemiol. 2011;40(4):931–939. doi: 10.1093/ije/dyq256.
    1. Marshall B. The fishes of Zimbabwe and their biology. Grahamstown: The South African Institute for Aquatic Biodiversity: Monograph 3; 2010. pp. 1–286.
    1. Torrance JD. Climate handbook of Zimbabwe. Harare: Department of Meteorological Services; 1981.
    1. Ministry of Health and Child Care (MOHCC) Zimbabwe National Malaria Control Programme 2014–2015. Harare: MOHCC; 2014.
    1. Midzi N, Kavhu B, Manangazira P, Phiri I, Mutambu SL, Tshuma C, Chimbari MJ, Munyati S, Midzi SM, Charimari L, Ncube A, Mutsaka-Makuvaza MJ, Soko W, Madzima E, Hlerema G, Mbedzi J, Mhlanga G, Masocha M. Inclusion of edaphic predictors for enhancement of models to determine distribution of soil-transmitted helminths: the case of Zimbabwe. Parasites & Vectors. 2018;11(47):1–13.
    1. Zimbabwe National Statistics Agency (ZIMSTAT) Zimbabwe Population Census 2012. Harare: ZIMSTAT; 2012.
    1. Zimbabwe National Statistics Agency (ZIMSTAT) Zimbabwe Population Projections Thematic Report. Harare: ZIMSTAT; 2015.
    1. Kulldorff M. A spatial scan statistic. Communications in Statistics -Theory and Methods. 1997;26:1481–1496. doi: 10.1080/03610929708831995.
    1. Kulldorff M, Feuer EJ, Miller BA, Freedman LS. Breast cancer clusters in the Northeast United States: a geographic analysis. Am J Epidemiology. 1997;146(2):161–170. doi: 10.1093/oxfordjournals.aje.a009247.
    1. Kulldorff Martin, Heffernan Richard, Hartman Jessica, Assunção Renato, Mostashari Farzad. A Space–Time Permutation Scan Statistic for Disease Outbreak Detection. PLoS Medicine. 2005;2(3):e59. doi: 10.1371/journal.pmed.0020059.
    1. Cheung YTD, Spittal MJ, Williamson MK, Tung SJ, Pirkis J. Application of scan statistics to detect suicide clusters in Australia. PLoS One. 2013;8(1):e54168. doi: 10.1371/journal.pone.0054168.
    1. Coleman M, Coleman M, Mabuza AM, Kok G, Coetzee M, Durrheim DN. Using the SaTScan method to detect local malaria clusters for guiding malaria control programmes. Malar J. 2009;8:68. doi: 10.1186/1475-2875-8-68.
    1. Aamodt Geir, Samuelsen Sven O, Skrondal Anders. International Journal of Health Geographics. 2006;5(1):15. doi: 10.1186/1476-072X-5-15.
    1. Wand H, Ramjee G. Targeting the hotspots: investigating spatial and demographic variations in HIV infection in small communities in South Africa. J Int AIDS Soc. 2010;13(1):41. doi: 10.1186/1758-2652-13-41.
    1. Chen J, Roth RE, Naito AT, Lengerich EJ, MacEachren AM. Geovisual analytics to enhance spatial scan statistic interpretation: an analysis of US cervical cancer mortality. Int J Health Geogr. 2008;7(1):57. doi: 10.1186/1476-072X-7-57.
    1. Zhang W, Wang L, Fang L, Ma J, Xu Y, Jiang J, Hui F, Wang J, Liang S, Yang H. Spatial analysis of malaria in Anhui province, China. Malar J. 2008;7(1):206. doi: 10.1186/1475-2875-7-206.
    1. Kulldorff M. Commentary: geographical distribution of sporadic Creutzfeldt-Jakob disease in France. Int J Epidemiol. 2002;31(2):495–496. doi: 10.1093/ije/31.2.495.
    1. Xia J, Cai S, Zhang H, Lin W, Fan Y, Qiu J, Sun L, Chang B, Zhang Z, Nie S. Spatial, temporal, and spatiotemporal analysis of malaria in Hubei Province, China from 2004–2011. Malar J. 2015;14(145). 10.1186/s12936-015-0650-2.
    1. Liu Y, Wang X, Liu Y, Sun D, Ding S, Zhang B, Du Z, Xue F. Detecting spatial-temporal clusters of HFMD from 2007 to 2011 in Shandong Province, China. PLoS One. 2013;8(5):e63447. doi: 10.1371/journal.pone.0063447.
    1. Bousema T, Griffin JT, Sauerwein RW, Smith DL, Churcher TS, Takken W, Ghani A, Drakeley C, Gosling R. Hitting hotspots: spatial targeting of malaria for control and elimination. PLoS Med. 2012;9:e1001165. doi: 10.1371/journal.pmed.1001165.
    1. ESRI . ArcGIS Desktop: Release 10.3. Redlands CA: Environmental Systems Research Institute; 2011.
    1. Vitoria M, Granich R, Gilks CF, Gunneberg C, Hosseini M, Were W, Raviglione M, De Cock KM. The global fight against HIV/AIDS, tuberculosis, and malaria current status and future perspectives. Am J Clin Pathol. 2009;131(6):844–848. doi: 10.1309/AJCP5XHDB1PNAEYT.
    1. Hotez PJ, Molyneux DH, Fenwick A. Incorporating a rapid-impact package for neglected tropical diseases with programs for HIV/AIDS, tuberculosis and malaria. PLoS Med. 2006;3:e102. doi: 10.1371/journal.pmed.0030102.
    1. Hotez PJ, Molyneux DH, Fenwick A. Control of neglected tropical diseases. N Engl J Med. 2007;357:1018–1027. doi: 10.1056/NEJMra064142.
    1. Ngarakana-Gwasira E. T., Bhunu C. P., Masocha M., Mashonjowa E. Assessing the Role of Climate Change in Malaria Transmission in Africa. Malaria Research and Treatment. 2016;2016:1–7. doi: 10.1155/2016/7104291.
    1. Idemyor V. Human immunodeficiency virus (HIV) and malaria interaction in sub-Saharan Africa: the collision of two titans. HIV Clin Trials. 2007;8(4):246–253. doi: 10.1310/hct0804-246.
    1. Korenromp EL, Williams BG, de Vlas SJ, Gouws E, Gilks CF, Ghys PD, Nahlen BL. Malaria attributable to the HIV-1 epidemic sub-Saharan Africa. Emerg Infect Dis. 2005;11(9):1410–1419. doi: 10.3201/eid1109.050337.
    1. Cuadros Diego F., Branscum Adam J., García-Ramos Gisela. No Evidence of Association between HIV-1 and Malaria in Populations with Low HIV-1 Prevalence. PLoS ONE. 2011;6(8):e23458. doi: 10.1371/journal.pone.0023458.
    1. Ruperez M. Mortality, morbidity, and developmental outcomes in infants born to women who received either Mefloquine or Sulfadoxine-Pyrimethamine as intermittent preventive treatment of malaria in pregnancy: a cohort study. PLoS Med. 2016;13(2):e1001964. doi: 10.1371/journal.pmed.1001964.
    1. Rattanapunya Siwalee, Kuesap Jiraporn, Chaijaroenkul Wanna, Rueangweerayut Ronnatrai, Na-Bangchang Kesara. Prevalence of malaria and HIV coinfection and influence of HIV infection on malaria disease severity in population residing in malaria endemic area along the Thai–Myanmar border. Acta Tropica. 2015;145:55–60. doi: 10.1016/j.actatropica.2015.02.001.
    1. Zimbabwe National Statistics Agency (ZIMSTAT). Zimbabwe Poverty Atlas. Harare, ZIMSTAT; 2015.
    1. Kangoye DT, Noor A, Midega J, Mwongeli J, Mkabili D, Mogeni P, Kerubo C, Akoo P, Mwangangi J, Drakeley C, Marsh K, Bejon P, Njuguna P. Malaria hotspots defined by clinical malaria, asymptomatic carriage, PCR and vector numbers in a low transmission area on the Kenyan coast. Malar J. 2016;15(213):1–13.
    1. Kahn JG, Muraguri N, Harris B, Lugada E, Clasen T, Grabowsky M, Mermin J, Shariff S. Integrated HIV testing, malaria, and Diarrhoea prevention campaign in Kenya: modeled health impact and cost-effectiveness. PLoS One. 2012;7(2):e31316. doi: 10.1371/journal.pone.0031316.
    1. Verguet S, Kahn JG, Marseille E, Jiwani A, Kern E, Walson JL. Are long-lasting insecticide-treated bednets and water filters cost-effective tools for delaying HIV disease progression in Kenya? Glob Health Action. 2015;8:27695. doi: 10.3402/gha.v8.27695.
    1. Adeola AM, Botai OJ, Olwoch JM, Rautenbach CJ, Adisa OM, Taiwo OJ, Kalumba AM. Environmental factors and population at risk of malaria in Nkomazi municipality, South Africa. Trop Med Int Health. 2016;21(5):675–686. doi: 10.1111/tmi.12680.
    1. Ayala D, Costantini C, Ose K, Kamdem GC, Antonio-Nkondjio C, Agbor JP, Awono-Ambene P, Fontenille D, Simard F. Habitat suitability and ecological niche profile of major malaria vectors in Cameroon. Malar J. 2009;8:307. doi: 10.1186/1475-2875-8-307.
    1. Rulisa S, Kateera F, Bizimana JP, Agaba S, Dukuzumuremyi J, Baas L. Malaria prevalence, spatial clustering and risk factors in a low endemic area of eastern Rwanda: a cross sectional study. PLoS One. 2013;8:e69443. doi: 10.1371/journal.pone.0069443.
    1. Sande S, Zimba M, Chinwada P, Masendu HT, Mberikunshe J. Makuwaza a. a review of new challenges and prospects for malaria elimination in Mutare and Mutasa districts, Zimbabwe. Malar J. 2016;15(1):360. doi: 10.1186/s12936-016-1415-2.
    1. Snow R, Guerra C, Noor A, Myint H, Hay S. The global distribution of clinical episodes of plasmodium falciparum malaria. Nature. 2005;434:214–217. doi: 10.1038/nature03342.

Source: PubMed

3
订阅