Effect of noisy galvanic vestibular stimulation on dynamic posture sway under visual deprivation in patients with bilateral vestibular hypofunction

Po-Yin Chen, Ying-Chun Jheng, Chien-Chih Wang, Shih-En Huang, Ting-Hua Yang, Po-Cheng Hsu, Chia-Hua Kuo, Yi-Ying Lin, Wei-Yi Lai, Chung-Lan Kao, Po-Yin Chen, Ying-Chun Jheng, Chien-Chih Wang, Shih-En Huang, Ting-Hua Yang, Po-Cheng Hsu, Chia-Hua Kuo, Yi-Ying Lin, Wei-Yi Lai, Chung-Lan Kao

Abstract

A single-blind study to investigate the effects of noisy galvanic vestibular stimulation (nGVS) in straight walking and 2 Hz head yaw walking for healthy and bilateral vestibular hypofunction (BVH) participants in light and dark conditions. The optimal stimulation intensity for each participant was determined by calculating standing stability on a force plate while randomly applying six graded nGVS intensities (0-1000 µA). The chest-pelvic (C/P) ratio and lateral deviation of the center of mass (COM) were measured by motion capture during straight and 2 Hz head yaw walking in light and dark conditions. Participants were blinded to nGVS served randomly and imperceivably. Ten BVH patients and 16 healthy participants completed all trials. In the light condition, the COM lateral deviation significantly decreased only in straight walking (p = 0.037) with nGVS for the BVH. In the dark condition, both healthy (p = 0.026) and BVH (p = 0.017) exhibited decreased lateral deviation during nGVS. The C/P ratio decreased significantly in BVH for 2 Hz head yaw walking with nGVS (p = 0.005) in light conditions. This study demonstrated that nGVS effectively reduced walking deviations, especially in visual deprived condition for the BVH. Applying nGVS with different head rotation frequencies and light exposure levels may accelerate the rehabilitation process for patients with BVH.Clinical Trial Registration This clinical trial was prospectively registered at www.clinicaltrials.gov with the Unique identifier: NCT03554941. Date of registration: (13/06/2018).

Conflict of interest statement

The authors declare no competing interests.

Figures

Figure 1
Figure 1
Flow chart of all the tests with participant’s preparation. Participants wore a motion capture (mocap) suit with plug-in-gait marker setting. A galvanic vestibular stimulation (nGVS) device was fixed on participant’s back firmly. nGVS noisy galvanic vestibular stimulation, CoP center of pressure, and C/P ratio chest–pelvis ratio.
Figure 2
Figure 2
C/P ratio of patients with BVH (A) and healthy participants (B) in the light condition. Only condition 2 showed reduced deviations during noisy galvanic vestibular stimulation (nGVS). BVH bilateral vestibular hypofunction, C/P ratio chest–pelvis ratio, *p < 0.05.
Figure 3
Figure 3
Comparisons of stride length (A) and steps variability (B) in patients. Patients showed reduced step length in light condition and steps variability in all conditions during noisy galvanic vestibular stimulation (nGVS), *p < 0.05.
Figure 4
Figure 4
Comparison of walking deviations between healthy participants and patients. This figure shows the change of walking deviations by noisy galvanic vestibular stimulation (nGVS) during walking with 2 Hz head rotation. The results show the change of each healthy participant (left side) and patient (right side).

References

    1. Herdman, S. J. & Clendaniel, R. A. Vestibular Rehabilitation (4th ed.) 394–431 (FA Davis Company, Philadelphia, US, 2014).
    1. Sure, D. R. & Culicchia, F. Duus’ Topical Diagnosis in Neurology: Anatomy, Physiology, Signs, Symptoms. 2013, LWW.
    1. Yoder RM, Taube JS. The vestibular contribution to the head direction signal and navigation. Front. Integr. Neurosci. 2014;8:32. doi: 10.3389/fnint.2014.00032.
    1. Angelaki DE, Cullen KE. Vestibular system: the many facets of a multimodal sense. Annu. Rev. Neurosci. 2008;31:125–150. doi: 10.1146/annurev.neuro.31.060407.125555.
    1. Tee L, Chee N. Vestibular rehabilitation therapy for the dizzy patient. Ann. Acad. Med. Singap. 2005;34:289–294.
    1. Han BI, Song HS, Kim JS. Vestibular rehabilitation therapy: review of indications, mechanisms, and key exercises. J. Clin. Neurosci. 2011;7:184–196.
    1. Hain TC, Cherchi M, Yacovino DA. Bilateral vestibular weakness. Front. Integr. Neurosci. 2018;9:344.
    1. Schniepp R, et al. Clinical and neurophysiological risk factors for falls in patients with bilateral vestibulopathy. J. Neurol. 2017;264:277–283. doi: 10.1007/s00415-016-8342-6.
    1. Herdman SJ, et al. Falls in patients with vestibular deficits. Otol. Neurotol. 2000;21:847–851.
    1. Utz KS, et al. Electrified minds: transcranial direct current stimulation (tDCS) and galvanic vestibular stimulation (GVS) as methods of non-invasive brain stimulation in neuropsychology—a review of current data and future implications. Neuropsychologia. 2010;48:2789–2810. doi: 10.1016/j.neuropsychologia.2010.06.002.
    1. Lobel E, et al. Cortical areas activated by bilateral galvanic vestibular stimulation. Ann. N. Y. Acad. Sci. 1999;871:313–323. doi: 10.1111/j.1749-6632.1999.tb09194.x.
    1. Smith AT, Wall MB, Thilo KV. Vestibular inputs to human motion-sensitive visual cortex. Cereb. Cortex. 2012;22:1068–1077. doi: 10.1093/cercor/bhr179.
    1. Courjon J, Precht W, Sirkin D. Vestibular nerve and nuclei unit responses and eye movement responses to repetitive galvanic stimulation of the labyrinth in the rat. Exp. Brain Res. 1987;66:41–48. doi: 10.1007/BF00236200.
    1. Serrador JM, et al. Enhancing vestibular function in the elderly with imperceptible electrical stimulation. Sci. Rep. 2018;8:1–6. doi: 10.1038/s41598-017-18653-8.
    1. Iwasaki S, et al. Noisy vestibular stimulation improves body balance in bilateral vestibulopathy. Neurology. 2014;82:969–975. doi: 10.1212/WNL.0000000000000215.
    1. Goel R, et al. Using low levels of stochastic vestibular stimulation to improve balance function. PLoS ONE. 2015;10:e0136335. doi: 10.1371/journal.pone.0136335.
    1. Inukai Y, et al. Effect of noisy galvanic vestibular stimulation on center of pressure sway of static standing posture. Brain Stimul. 2018;11:85–93. doi: 10.1016/j.brs.2017.10.007.
    1. Keywan A, et al. Noisy galvanic stimulation improves roll-tilt vestibular perception in healthy participants. Front. Neurol. 2018;9:83. doi: 10.3389/fneur.2018.00083.
    1. Fujimoto C, et al. Noisy galvanic vestibular stimulation induces a sustained improvement in body balance in elderly adults. Sci. Rep. 2016;6:1–8. doi: 10.1038/s41598-016-0001-8.
    1. Iwasaki S, et al. Noisy vestibular stimulation increases gait speed in normals and in bilateral vestibulopathy. Brain Stimul. 2018;11:709–715. doi: 10.1016/j.brs.2018.03.005.
    1. Wuehr M, et al. Noisy vestibular stimulation improves dynamic walking stability in bilateral vestibulopathy. Neurology. 2016;86:2196–2202. doi: 10.1212/WNL.0000000000002748.
    1. Mulavara AP, et al. Using low levels of stochastic vestibular stimulation to improve locomotor stability. Front. Syst. Neurosci. 2015;9:117. doi: 10.3389/fnsys.2015.00117.
    1. Iwasaki S, et al. Effect of noisy galvanic vestibular stimulation on ocular vestibular-evoked myogenic potentials to bone-conducted vibration. Front. Neurol. 2017;8:26. doi: 10.3389/fneur.2017.00026.
    1. Hilliard D, et al. Noisy galvanic vestibular stimulation modulates spatial memory in young healthy adults. Sci. Rep. 2019;9:1–11. doi: 10.1038/s41598-019-45757-0.
    1. Mulavara AP, et al. Improving balance function using vestibular stochastic resonance: optimizing stimulus characteristics. Exp. Brain. Res. 2011;210:303–312. doi: 10.1007/s00221-011-2633-z.
    1. Wuehr M, et al. Stochastic resonance in the human vestibular system—Noise-induced facilitation of vestibulospinal reflexes. Brain Stimul. 2018;11:261–263. doi: 10.1016/j.brs.2017.10.016.
    1. Brach JS, et al. Stance time and step width variability have unique contributing impairments in older persons. Gait Posture. 2008;27:431–439. doi: 10.1016/j.gaitpost.2007.05.016.
    1. Owings TM, Grabiner MD. Step width variability, but not step length variability or step time variability, discriminates gait of healthy young and older adults during treadmill locomotion. J. Biomech. 2004;37:935–938. doi: 10.1016/j.jbiomech.2003.11.012.
    1. Thies SB, Richardson JK, Ashton-Miller JA. Effects of surface irregularity and lighting on step variability during gait: a study in healthy young and older women. Gait Posture. 2005;22:26–31. doi: 10.1016/j.gaitpost.2004.06.004.
    1. St George RJ, Fitzpatrick RC. The sense of self-motion, orientation and balance explored by vestibular stimulation. J. Physiol. 2011;589:807–813. doi: 10.1113/jphysiol.2010.197665.
    1. Bent LR, McFadyen BJ, Inglis JT. Vestibular contributions during human locomotor tasks. Exerc. Sport Sci. Rev. 2005;33:107–113. doi: 10.1097/00003677-200507000-00002.
    1. Wagenaar R, Beek W. Hemiplegic gait: a kinematic analysis using walking speed as a basis. J. Biomech. 1992;25:1007–1015. doi: 10.1016/0021-9290(92)90036-Z.
    1. Selles RW, et al. Disorders in trunk rotation during walking in patients with low back pain: a dynamical systems approach. Clin. Biomech. 2001;16:175–181. doi: 10.1016/S0268-0033(00)00080-2.
    1. Van Emmerik RE, et al. Identification of axial rigidity during locomotion in Parkinson disease. Arch. Phys. Med. Rehabil. 1999;80:186–191. doi: 10.1016/S0003-9993(99)90119-3.
    1. Wei S-H, et al. Visual afference mediates head and trunk stability in vestibular hypofunction. J. Clin. Neurosci. 2016;29:139–144. doi: 10.1016/j.jocn.2015.10.037.
    1. Paul SS, et al. Characterization of head-trunk coordination deficits after unilateral vestibular hypofunction using wearable sensors. JAMA Otolaryngol. Head Neck Surg. 2017;143:1008–1014. doi: 10.1001/jamaoto.2017.1443.
    1. Macey PM, et al. Differential responses of the insular cortex gyri to autonomic challenges. Auton. Neurosci. 2012;168:72–81. doi: 10.1016/j.autneu.2012.01.009.
    1. Nagel M, et al. Parametric modulation of cortical activation during smooth pursuit with and without target blanking. An fMRI study. Neuroimage. 2006;29:1319–1325. doi: 10.1016/j.neuroimage.2005.08.050.
    1. Roberts RE, et al. Functional neuroimaging of visuo-vestibular interaction. Brain Struct. Funct. 2017;222:2329–2343. doi: 10.1007/s00429-016-1344-4.
    1. Brandt T, et al. Reciprocal inhibitory visual-vestibular interaction visual motion stimulation deactivates the parieto-insular vestibular cortex. Brain. 1998;121:1749–1758. doi: 10.1093/brain/121.9.1749.
    1. Helmchen C, et al. Increased brain responsivity to galvanic vestibular stimulation in bilateral vestibular failure. Neuroimage Clin. 2019;24:101942. doi: 10.1016/j.nicl.2019.101942.
    1. Kwan A, et al. Neural substrates, dynamics and thresholds of galvanic vestibular stimulation in the behaving primate. Nat. Commun. 2019;10:1–15. doi: 10.1038/s41467-019-09738-1.
    1. Kuatsjah E, Khoshnam M, Menon C. Investigation on the effect of noisy galvanic vestibular stimulation on fine motor skills during a visuomotor task in healthy participants. PLoS ONE. 2019;14:e0216214. doi: 10.1371/journal.pone.0216214.
    1. Lopez C, Blanke O. The thalamocortical vestibular system in animals and humans. Brain Res. Rev. 2011;67:119–146. doi: 10.1016/j.brainresrev.2010.12.002.
    1. Lopez C, Blanke O, Mast FW. The human vestibular cortex revealed by coordinate-based activation likelihood estimation meta-analysis. Neuroscience. 2012;212:159–179. doi: 10.1016/j.neuroscience.2012.03.028.
    1. Cullen, K. Physiology of Central Pathways, in Handbook of Clinical Neurology (eds Furman, J. M. & Lempert, T.) 17–40 (Elsevier, Amsterdam 2016).
    1. Dieterich M, Brandt T. The bilateral central vestibular system: its pathways, functions, and disorders. Ann. N. Y. Acad. Sci. 2015;1343:10–26. doi: 10.1111/nyas.12585.
    1. ​Helmchen, C., Machner, B., Rother, M., Spliethoff, P., Göttlich, M. & Sprenger, A. (2020). Effects of galvanic vestibular stimulation on resting state brain activity in patients with bilateral vestibulopathy. Hum. Brain. Mapp.41(9), 2527–2547.
    1. Wuehr M, et al. Noise-enhanced vestibular input improves dynamic walking stability in healthy participants. Brain Stimul. 2016;9:109–116. doi: 10.1016/j.brs.2015.08.017.

Source: PubMed

3
订阅