TKI rotation-induced persistent deep molecular response in multi-resistant blast crisis of Ph+ CML

Peter Valent, Susanne Herndlhofer, Mathias Schneeweiß, Bernd Boidol, Anna Ringler, Stefan Kubicek, Karoline V Gleixner, Gregor Hoermann, Emir Hadzijusufovic, Leonhard Müllauer, Wolfgang R Sperr, Giulio Superti-Furga, Christine Mannhalter, Peter Valent, Susanne Herndlhofer, Mathias Schneeweiß, Bernd Boidol, Anna Ringler, Stefan Kubicek, Karoline V Gleixner, Gregor Hoermann, Emir Hadzijusufovic, Leonhard Müllauer, Wolfgang R Sperr, Giulio Superti-Furga, Christine Mannhalter

Abstract

In chronic myeloid leukemia (CML) resistance against one or more BCR-ABL1 tyrosine kinase inhibitors (TKI) remains a clinical challenge. Preclinical data suggest that TKI combinations may overcome resistance. We report on a heavily pre-treated 78 year-old female patient with CML who developed multi-resistant blast crisis with bone marrow fibrosis and a Ph- clone. Treatment with ponatinib resulted in blast cell clearance, decrease in fibrosis, and disappearance of BCR-ABL1, but also in severe thrombocytopenia with bleedings requiring platelet transfusions. We therefore switched from ponatinib to bosutinib. During bosutinib, platelet counts recovered. However, after 6 months, BCR-ABL1 mRNA levels increased to > 1%. Therefore, we ´switched back´ to ponatinib, and this was again followed by disappearance of BCR-ABL1 and a decrease in platelets. During the next 2 years, we applied ponatinib and bosutinib in continuous rotation-cycles and added hydroxyurea in order to suppress all sub-clones and to balance between efficacy and potential side effects following the principle of personalized medicine. With this approach the patient remained in complete molecular response and reached normal blood counts and a normal quality of life without vascular or other side effects. In conclusion, TKI rotation is a novel potent approach to suppress multiple resistant sub-clones and to balance between clinical efficacy and side effects in patients with advanced CML. Clinical trials are now warranted to show that TKI-rotation is in general safe and effective in these patients.

Keywords: BCR-ABL1 mutations; CML; drug resistance; nilotinib; ponatinib.

Conflict of interest statement

CONFLICTS OF INTEREST

PV received honoraria from Novartis, Pfizer, BMS, and Ariad, and research grants from Novartis and Ariad. The authors declare no other conflicts of interest.

Figures

Figure 1. Overview of clinical course and…
Figure 1. Overview of clinical course and response to TKI rotation therapy
(A) Response to treatment with nilotinib and ponatinib, and influence of TKI therapy on blood counts and BCR-ABL1 mRNA levels: The patient was treated with nilotinib after resistance against dasatinib had been documented. During nilotinib, BCR-ABL1 decreased but did not disappear. After several months, BCR-ABL1 increased again and cytopenia developed. Finally, the patient developed blast crisis and treatment with ponatinib was initiated. In response to ponatinib, BCR-ABL1 mRNA levels decreased, but the patient developed severe thrombocytopenia. (B) Response to treatment with ponatinib/bosutinib-rotation and hydroxyurea (HU): Because of thrombocytopenia, the patient was switched to bosutinib (after a short phase of imatinib-bridging). During bosutinib, platelet counts recovered slowly, but BCR-ABL1 increased again. Therefore, we switched back to ponatinib, and finally decided to apply ponatinib and bosutinib in continuous rotation-cycles together with low-dose HU. Under this therapy, blood counts normalized, the patient entered a stable continuous complete response, and has a normal quality of life without major side effects.
Figure 2. Clonal evolution during TKI therapy…
Figure 2. Clonal evolution during TKI therapy as assessed by HUMARA
The HUMARA assay was performed with peripheral blood mononuclear cells in certain time intervals (from 2005 = month 0) as indicated. As assessed by HUMARA, a monoclonal pattern was seen in 2005 (month 0) and at the time of relapse with a Ph-negative clone when bone marrow (BM) fibrosis was detected (months 95–97). However, after successful treatment with dasatinib and nilotinib (months 9–22), a polyclonal pattern was obtained by HUMARA testing.
Figure 3. Drug combination effects in CML…
Figure 3. Drug combination effects in CML cells
(A) KU812 cells (upper panel) and K562 cells (lower panel) were incubated in control medium (Co), with various concentrations of ponatinib or bosutinib, or with a combination of both drugs at a fixed ratio (KU812 at 1:16; K562 at 1:100) at 37°C for 48 hours. Thereafter, 3H-thymidine was added for 16 hours, and uptake of 3H-thymidine was measured in a β-counter. Results are expressed as percent of medium control and represent the mean ± S.D. of quadruplicates. In case of KU812 cells, the drug combination was found to be highly synergistic, whereas in K562 cells, mostly additive effects were obtained. (B) Primary patient-derived blast cells were incubated in control medium (Co) or with increasing concentrations of hydroxyurea (HU), ponatinib, or bosutinib at 37°C and 5% CO2 for 48 hours as indicated. Then, 3H-thymidine uptake was measured. Results are expressed as percent of control and represent the mean ± S.D. of triplicates. (C) KU812 cells were incubated with ponatinib (0.1 nM: ■-■, 0.5 nM: ▲−▲, 1.0 nM: ▼-▼, or control medium: •-•) at 37°C for 4 hours. Then, cells were washed and incubated in control medium (Co) or bosutinib at various concentrations as indicated for another 48 hours. Thereafter, 3H-thymidine uptake was measured. Results are expressed as percent of control and represent the mean ± S.D. of triplicates. (D) KU812 cells were incubated in control medium (Co), ponatinib (0.2 nM), bosutinib (10 nM), or a combination of both drugs at 37°C for 48 hours. Thereafter, the percentage of AnnexinV/PI-positive cells was determined by flow cytometry. Results represent the mean ± S.D. of 3 independent experiments. Asterisk (*): p < 0.05 compared to control.
Figure 4. High capacity drug testing using…
Figure 4. High capacity drug testing using patient-derived CML blast crisis cells
(A) Nanoliter amounts of BCR-ABL1 TKI and other drugs were pre-seeded at 4 defined concentrations into 384-well microtiter plates using acoustic compound transfer. CML cells (10,000 per well) were automatically plated and incubated with drugs at 37°C for 72 hours. Thereafter, cell viability was determined using Cell-Titer Glo assay. Responses were determined by measuring the percentage of viable cell (relative to control) at the 4 drug concentrations applied. (B) Cells were exposed to the drug combinations ´bosutinib+hydroxyurea´ (upper panel), ´ponatinib+hydroxyurea´ (middle panel), and ´ponatinib+bosutinib´ (lower panel) in the robotic drug testing assay.

References

    1. Faderl S, Talpaz M, Estrov Z, O'Brien S, Kurzrock R, Kantarjian HM. The biology of chronic myeloid leukemia. N Engl J Med. 1999;341:164–72.
    1. Melo JV, Barnes DJ. Chronic myeloid leukaemia as a model of disease evolution in human cancer. Nat Rev Cancer. 2007;7:441–53.
    1. Goldman JM. Chronic myeloid leukemia: a historical perspective. Semin Hematol. 2010;47:302–11.
    1. Druker BJ, Talpaz M, Resta DJ, Peng B, Buchdunger E, Ford JM, Lydon NB, Kantarjian H, Capdeville R, Ohno-Jones S, Sawyers CL. Efficacy and safety of a specific inhibitor of the BCR-ABL tyrosine kinase in chronic myeloid leukemia. N Engl J Med. 2001;344:1031–37.
    1. O'Brien SG, Guilhot F, Larson RA, Gathmann I, Baccarani M, Cervantes F, Cornelissen JJ, Fischer T, Hochhaus A, Hughes T, Lechner K, Nielsen JL, Rousselot P, et al. Imatinib compared with interferon and low-dose cytarabine for newly diagnosed chronic-phase chronic myeloid leukemia. N Engl J Med. 2003;348:994–1004.
    1. Druker BJ, Guilhot F, O'Brien SG, Gathmann I, Kantarjian H, Gattermann N, Deininger MW, Silver RT, Goldman JM, Stone RM, Cervantes F, Hochhaus A, Powell BL, et al. Five-year follow-up of patients receiving imatinib for chronic myeloid leukemia. N Engl J Med. 2006;355:2408–17.
    1. Mahon FX, Etienne G. Deep molecular response in chronic myeloid leukemia: the new goal of therapy? Clin Cancer Res. 2014;20:310–22.
    1. Gorre ME, Mohammed M, Ellwood K, Hsu N, Paquette R, Rao PN, Sawyers CL. Clinical resistance to STI-571 cancer therapy caused by BCR-ABL gene mutation or amplification. Science. 2001;293:876–80.
    1. Shah NP, Nicoll JM, Nagar B, Gorre ME, Paquette RL, Kuriyan J, Sawyers CL. Multiple BCR-ABL kinase domain mutations confer polyclonal resistance to the tyrosine kinase inhibitor imatinib (STI571) in chronic phase and blast crisis chronic myeloid leukemia. Cancer Cell. 2002;2:117–25.
    1. Deininger M. Resistance and relapse with imatinib in CML: causes and consequences. J Natl Compr Canc Netw. 2008;6:S11–S21.
    1. Shah NP, Tran C, Lee FY, Chen P, Norris D, Sawyers CL. Overriding imatinib resistance with a novel ABL kinase inhibitor. Science. 2004;305:399–401.
    1. Weisberg E, Manley PW, Breitenstein W, Brüggen J, Cowan-Jacob SW, Ray A, Huntly B, Fabbro D, Fendrich G, Hall-Meyers E, Kung AL, Mestan J, Daley GQ, et al. Characterization of AMN107, a selective inhibitor of native and mutant Bcr-Abl. Cancer Cell. 2005;7:129–41.
    1. Martinelli G, Soverini S, Rosti G, Cilloni D, Baccarani M. New tyrosine kinase inhibitors in chronic myeloid leukemia. Haematologica. 2005;90:534–41.
    1. Jabbour E, Jones D, Kantarjian HM, O'Brien S, Tam C, Koller C, Burger JA, Borthakur G, Wierda WG, Cortes J. Long-term outcome of patients with chronic myeloid leukemia treated with second-generation tyrosine kinase inhibitors after imatinib failure is predicted by the in vitro sensitivity of BCR-ABL kinase domain mutations. Blood. 2009;114:2037–43.
    1. Jabbour E, Kantarjian H. Chronic myeloid leukemia: 2014 update on diagnosis, monitoring, and management. Am J Hematol. 2014;89:547–56.
    1. Nicolini FE, Hayette S, Corm S, Bachy E, Bories D, Tulliez M, Guilhot F, Legros L, Maloisel F, Kiladjian JJ, Mahon FX, Le QH, Michallet M, et al. Clinical outcome of 27 imatinib mesylate-resistant chronic myelogenous leukemia patients harboring a T315I BCR-ABL mutation. Haematologica. 2007;92:1238–41.
    1. Jabbour E, Kantarjian H, Jones D, Breeden M, Garcia-Manero G, O'Brien S, Ravandi F, Borthakur G, Cortes J. Characteristics and outcomes of patients with chronic myeloid leukemia and T315I mutation following failure of imatinib mesylate therapy. Blood. 2008;112:53–55.
    1. Quintás-Cardama A, Cortes J. Therapeutic options against BCR-ABL1 T315I-positive chronic myelogenous leukemia. Clin Cancer Res. 2008;14:4392–99.
    1. O'Hare T, Shakespeare WC, Zhu X, Eide CA, Rivera VM, Wang F, Adrian LT, Zhou T, Huang WS, Xu Q, Metcalf CA, Tyner JW, Loriaux MM, et al. AP24534, a pan-BCR-ABL inhibitor for chronic myeloid leukemia, potently inhibits the T315I mutant and overcomes mutation-based resistance. Cancer Cell. 2009;16:401–12.
    1. Cortes JE, Kantarjian H, Shah NP, Bixby D, Mauro MJ, Flinn I, O'Hare T, Hu S, Narasimhan NI, Rivera VM, Clackson T, Turner CD, Haluska FG, et al. Ponatinib in refractory Philadelphia chromosome-positive leukemias. N Engl J Med. 2012;367:2075–88.
    1. Cortes JE, Kim DW, Pinilla-Ibarz J, le Coutre P, Paquette R, Chuah C, Nicolini FE, Apperley JF, Khoury HJ, Talpaz M, DiPersio J, DeAngelo DJ, Abruzzese E, et al. A phase 2 trial of ponatinib in Philadelphia chromosome-positive leukemias. N Engl J Med. 2013;369:1783–96.
    1. Mayer K, Gielen GH, Willinek W, Müller MC, Wolf D. Fatal progressive cerebral ischemia in CML under third-line treatment with ponatinib. Leukemia. 2014;28:976–77.
    1. Valent P, Hadzijusufovic E, Schernthaner GH, Wolf D, Rea D, le Coutre P. Vascular safety issues in CML patients treated with BCR/ABL1 kinase inhibitors. Blood. 2015;125:901–6.
    1. Badalian-Very G. Personalized medicine in hematology - A landmark from bench to bed. Comput Struct Biotechnol J. 2014;10:70–7.
    1. Park S, Koh Y, Jung SH, Chung YJ. Application of array comparative genomic hybridization in chronic myeloid leukemia. Methods Mol Biol. 2013;973:55–68.
    1. Huang Y, Zheng J, Hu JD, Wu YA, Zheng XY, Liu TB, Chen FL. Discovery of somatic mutations in the progression of chronic myeloid leukemia by whole-exome sequencing. Genet Mol Res. 2014;13:945–53.
    1. Navarro JT, Feliu E, Grau J, Espinet B, Colomer D, Ribera JM, Oriol A, Granada I, Juncà J, Millá F. Monosomy 7 with severe myelodysplasia developing during imatinib treatment of Philadelphia-positive chronic myeloid leukemia: two cases with a different outcome. Am J Hematol. 2007;82:849–51.
    1. Gugliotta G, Castagnetti F, Breccia M, Gozzini A, Usala E, Carella AM, Rege-Cambrin G, Martino B, Abruzzese E, Albano F, Stagno F, Luciano L, D´Adda M, et al. Rotation of nilotinib and imatinib for first-line treatment of chronic phase chronic myeloid leukemia. Am J Hematol. 2016;91:617–22.
    1. O'Hare T, Walters DK, Stoffregen EP, Sherbenou DW, Heinrich MC, Deininger MW, Druker BJ. Combined Abl inhibitor therapy for minimizing drug resistance in chronic myeloid leukemia: Src/Abl inhibitors are compatible with imatinib. Clin Cancer Res. 2005;11:6987–93.
    1. Radujkovic A, Fruehauf S, Zeller WJ, Ho AD, Topaly J. Synergistic activity of nilotinib and established chemotherapeutic drugs in imatinib-sensitive and -resistant BCR-ABL-positive cells. Cancer Chemother Pharmacol. 2010;66:255–64.
    1. Valent P. Targeting of leukemia-initiating cells to develop curative drug therapies: straightforward but nontrivial concept. Curr Cancer Drug Targets. 2011;11:56–71.
    1. Valent P, Bonnet D, Wöhrer S, Andreeff M, Copland M, Chomienne C, Eaves C. Heterogeneity of neoplastic stem cells: theoretical, functional, and clinical implications. Cancer Res. 2013;73:1037–45.
    1. Preuner S, Mitterbauer G, Mannhalter C, Herndlhofer S, Sperr WR, Valent P, Lion T. Quantitative monitoring of BCR/ABL1 mutants for surveillance of subclone-evolution, -expansion, and -depletion in chronic myeloid leukaemia. Eur J Cancer. 2012;48:233–6.
    1. Orazi A, Neiman RS, Cualing H, Heerema NA, John K. CD34 immunostaining of bone marrow biopsy specimens is a reliable way to classify the phases of chronic myeloid leukemia. Am J Clin Pathol. 1994;101:426–8.
    1. Valent P, Orazi A, Büsche G, Schmitt-Gräff A, George TI, Sotlar K, Streubel B, Beham-Schmid C, Cerny-Reiterer S, Krieger O, van de Loosdrecht A, Kern W, Ogata K. Standards and impact of hematopathology in myelodysplastic syndromes (MDS) Oncotarget. 2010;1:483–96. doi: 10.18632/oncotarget.101104.
    1. Bolufer P, Sanz GF, Barragán E, Sanz MA, Cervera J, Lerma E, Senent L, Moreno I, Planelles MD. Rapid quantitative detection of BCR-ABL transcripts in chronic myeloid leukemia patients by real-time reverse transcriptase polymerase-chain reaction using fluorescently labeled probes. Haematologica. 2000;85:1248–54.
    1. Branford S, Fletcher L, Cross NC, Müller MC, Hochhaus A, Kim DW, Radich JP, Saglio G, Pane F, Kamel-Reid S, Wang YL, Press RD, Lynch K, et al. Desirable performance characteristics for BCR-ABL measurement on an international reporting scale to allow consistent interpretation of individual patient response and comparison of response rates between clinical trials. Blood. 2008;112:3330–38.
    1. Hughes T, Deininger M, Hochhaus A, Branford S, Radich J, Kaeda J, Baccarani M, Cortes J, Cross NC, Druker BJ, Gabert J, Grimwade D, Hehlmann R, et al. Monitoring CML patients responding to treatment with tyrosine kinase inhibitors: review and recommendations for harmonizing current methodology for detecting BCR-ABL transcripts and kinase domain mutations and for expressing results. Blood. 2006;108:28–37.
    1. Hochhaus A, Kreil S, Corbin AS, La Rosée P, Müller MC, Lahaye T, Hanfstein B, Schoch C, Cross NC, Berger U, Gschaidmeier H, Druker BJ, Hehlmann R. Molecular and chromosomal mechanisms of resistance to imatinib (STI571) therapy. Leukemia. 2002;16:2190–96.
    1. Brothman AR, Persons DL, Shaffer LG. Nomenclature evolution: Changes in the ISCN from the 2005 to the 2009 edition. Cytogenet Genome Res. 2009;127:1–4.
    1. Mitterbauer G, Winkler K, Gisslinger H, Geissler K, Lechner K, Mannhalter C. Clonality analysis using X-chromosome inactivation at the human androgen receptor gene (Humara). Evaluation of large cohorts of patients with chronic myeloproliferative diseases, secondary neutrophilia, and reactive thrombocytosis. Am J Clin Pathol. 1999;112:93–100.
    1. Gleixner KV, Ferenc V, Peter B, Gruze A, Meyer RA, Hadzijusufovic E, Cerny-Reiterer S, Mayerhofer M, Pickl WF, Sillaber C, Valent P. Polo-like kinase 1 (Plk1) as a novel drug target in chronic myeloid leukemia: overriding imatinib resistance with the Plk1 inhibitor BI 2536. Cancer Res. 2010;70:1513–23.
    1. Gleixner KV, Peter B, Blatt K, Suppan V, Reiter A, Radia D, Hadzijusufovic E, Valent P. Synergistic growth-inhibitory effects of ponatinib and midostaurin (PKC412) on neoplastic mast cells carrying KIT D816V. Haematologica. 2013;98:1450–7.
    1. Winter GE, Rix U, Lissat A, Stukalov A, Müllner MK, Bennett KL, Colinge J, Nijman SM, Kubicek S, Kovar H, Kontny U, Superti-Furga G. An integrated chemical biology approach identifies specific vulnerability of Ewing's sarcoma to combined inhibition of Aurora kinases A and B. Mol Cancer Ther. 2011;10:1846–56.
    1. Chou TC, Talalay P. Quantitative analysis of dose-effect relationships: the combined effects of multiple drugs or enzyme inhibitors. Adv Enzyme Regul. 1984;22:27–55.

Source: PubMed

3
订阅