Diagnostic Accuracy of Point of Care Cryptococcal Antigen Lateral Flow Assay in Fingerprick Whole Blood and Urine Samples for the Detection of Asymptomatic Cryptococcal Disease in Patients with Advanced HIV Disease

Kathryn Boyd, Vinie Kouamou, Admire Hlupeni, Zorodzai Tangwena, Chiratidzo E Ndhlovu, Azure T Makadzange, CryptoART Study Team, Kathryn Boyd, Vinie Kouamou, Admire Hlupeni, Zorodzai Tangwena, Chiratidzo E Ndhlovu, Azure T Makadzange, CryptoART Study Team

Abstract

Cryptococcal disease (CD) is a leading cause of mortality among individuals with advanced HIV disease (AHD). Screening with serum cryptococcal antigen (sCrAg) lateral flow assay (LFA) enables early detection of subclinical disease but requires venipuncture and laboratory processing. Clinic-based point of care (POC) CrAg screening tests using urine or fingerprick whole blood could facilitate early diagnosis of CD. We evaluated the diagnostic performance of POC clinic-based fingerprick whole blood and urine CrAg compared to the gold standard laboratory sCrAg LFA in screening for CD among asymptomatic individuals with CD4 counts of <200 cells/μL in Harare, Zimbabwe. sCrAg positive participants who consented to a lumbar puncture also had cerebrospinal fluid (CSF) CrAg testing and titers for CSF-positive specimens. A total of 1,333 individuals were screened, and over half (56.6%) were males. The median (interquartile range) CD4 count was 27.5 (11-46) cells/μL. We found a sensitivity of 63.8% (95% CI: 54.8-72.1) and specificity of 84.0% (95% CI: 81.7-86.0) for urine CrAg, and a sensitivity of 48.0% (95% CI: 39.1-57.1) and specificity of 99.5% (95% CI: 98.9-99.8) was found for fingerprick whole blood. The sensitivity of both POC CrAg tests increased in individuals with sCrAg titers of ≥1:160, CD4 count of <50 cells/μL and disseminated central nervous system (CNS) disease. Clinic-based POC urine and fingerprick whole blood CrAg testing performed better in screening for CD among AHD patients with CNS disease. More sensitive assays to identify AHD patients with asymptomatic CD are needed. IMPORTANCE Cryptococcal disease (CD) remains a leading cause of morbidity and mortality among individuals with advanced HIV disease (AHD). Identifying point of care (POC) approaches to screening for CD in asymptomatic individuals is important to guide therapeutic management. We evaluated the use of POC fingerprick whole blood and urine testing for cryptococcal disease in patients with AHD as compared with laboratory-based serum antigen testing. POC fingerprick whole blood and urine testing had low sensitivity and specificity in asymptomatic individuals with AHD. Most analysis has focused on evaluating test performance in symptomatic individuals. Here we show that POC testing with whole blood and urine samples should not be used to screen for asymptomatic CD in AHD.

Trial registration: ClinicalTrials.gov NCT02434172.

Keywords: Zimbabwe; advanced HIV disease; cryptococcal antigen; cryptococcal disease; diagnostic accuracy; point of care.

Conflict of interest statement

The authors declare no conflict of interest.

Figures

FIG 1
FIG 1
Distribution of the study participants. FP, fingerprick; CrAg, cryptococcal antigen; CSF, cerebrospinal fluid.

References

    1. World Health Organization. 2017. Managing advanced HIV disease and rapid initiation of antiretroviral therapy. WHO, Geneva, Switzerland.
    1. Balachandra S, Rogers JH, Ruangtragool L, Radin E, Musuka G, Oboho I, Paulin H, Parekh B, Birhanu S, Takarinda KC, Hakim A, Apollo T. 2020. Concurrent advanced HIV disease and viral load suppression in a high-burden setting: findings from the 2015–6 ZIMPHIA survey. PLoS One 15:e0230205. doi:10.1371/journal.pone.0230205.
    1. World Health Organization. 2018. Guidelines for the diagnosis, prevention, and management of cryptococcal disease in HIV-infected adults, adolescents and children, March 2018: supplement to the 2016 consolidated guidelines of the use of antiretroviral drugs for treating and preventing HIV infection. WHO, Geneva, Switzerland.
    1. Molloy SF, Kanyama C, Heyderman RS, Loyse A, Kouanfack C, Chanda D, Mfinanga S, Temfack E, Lakhi S, Lesikari S, Chan AK, Stone N, Kalata N, Karunaharan N, Gaskell K, Peirse M, Ellis J, Chawinga C, Lontsi S, Ndong J-G, Bright P, Lupiya D, Chen T, Bradley J, Adams J, van der Horst C, van Oosterhout JJ, Sini V, Mapoure YN, Mwaba P, Bicanic T, Lalloo DG, Wang D, Hosseinipour MC, Lortholary O, Jaffar S, Harrison TS, ACTA Trial Study Team . 2018. Antifungal combinations for treatment of cryptococcal meningitis in Africa. N Engl J Med 378:1004–1017. doi:10.1056/NEJMoa1710922.
    1. Waters LJ, Psomas CK, Barber TJ. 2021. Key highlights from the international AIDS society (IAS) conference 2021. J Virus Erad 7:100058. doi:10.1016/j.jve.2021.100058.
    1. Pasquier E, Kunda J, De Beaudrap P, Loyse A, Temfack E, Molloy SF, Harrison TS, Lortholary O. 2018. Long-term mortality and disability in cryptococcal meningitis: a systematic literature review. Clin Infect Dis 66:1122–1132.
    1. Bicanic T, Muzoora C, Brouwer AE, Meintjes G, Longley N, Taseera K, Rebe K, Loyse A, Jarvis J, Bekker L-G, Wood R, Limmathurotsakul D, Chierakul W, Stepniewska K, White NJ, Jaffar S, Harrison TS. 2009. Independent association between rate of clearance of infection and clinical outcome of HIV-associated cryptococcal meningitis: analysis of a combined cohort of 262 patients. Clin Infect Dis 49:702–709. doi:10.1086/604716.
    1. Rugemalila J, Maro VP, Kapanda G, Ndaro AJ, Jarvis JN. 2013. Cryptococcal antigen prevalence in HIV-infected Tanzanians: a cross-sectional study and evaluation of a point-of-care lateral flow assay. Trop Med Int Health 18:1075–1079. doi:10.1111/tmi.12157.
    1. Klausner JD, Vijayan T, Chiller T. 2013. Sensitivity and specificity of a new cryptococcal antigen lateral flow assay in serum and cerebrospinal fluid. MLO Med Lab Obs 45:16.
    1. McMullan BJ, Halliday C, Sorrell TC, Judd D, Sleiman S, Marriott D, Olma T, Chen SC-A. 2012. Clinical utility of the cryptococcal antigen lateral flow assay in a diagnostic mycology laboratory. PLoS One 7:e49541. doi:10.1371/journal.pone.0049541.
    1. Makadzange TA, Hlupeni A, Machekano R, Boyd K, Mtisi T, Nyamayaro P, Ross C, Vallabhaneni S, Balachandra S, Chonzi P, Ndhlovu CE. 2021. Survival following screening and preemptive antifungal therapy for subclinical cryptococcal disease in advanced HIV infection. AIDS 35:1929–1938. doi:10.1097/QAD.0000000000002971.
    1. Rajasingham R, Meya DB, Boulware DR. 2012. Integrating cryptococcal antigen screening and preemptive treatment into routine HIV care. J Acquir Immune Defic Syndr 59:85.
    1. Letang E, Müller MC, Ntamatungiro AJ, Kimera N, Faini D, Furrer H, Battegay M, Tanner M, Hatz C, Boulware DR, Glass TR. 2015. Cryptococcal antigenemia in immunocompromised human immunodeficiency virus patients in rural Tanzania: a preventable cause of early mortality. Open Forum Infect Dis 2:ofv046. doi:10.1093/ofid/ofv046.
    1. Meya DB, Manabe YC, Castelnuovo B, Cook BA, Elbireer AM, Kambugu A, Kamya MR, Bohjanen PR, Boulware DR. 2010. Cost-effectiveness of serum cryptococcal antigen screening to prevent deaths in HIV-infected persons with CD4+ cell count ≤100 cells/μL who start HIV therapy in resource-limited settings. Clin Infect Dis 51:448–455. doi:10.1086/655143.
    1. Mfinanga S, Chanda D, Kivuyo SL, Guinness L, Bottomley C, Simms V, Chijoka C, Masasi A, Kimaro G, Ngowi B, Kahwa A, Mwaba P, Harrison TS, Egwaga S, Jaffar S. 2015. Cryptococcal meningitis screening and community-based early adherence support in people with advanced HIV infection starting antiretroviral therapy in Tanzania and Zambia: an open-label, randomised controlled trial. Lancet 385:2173–2182. doi:10.1016/S0140-6736(15)60164-7.
    1. Jarvis JN, Lawn SD, Vogt M, Bangani N, Wood R, Harrison TS. 2009. Screening for cryptococcal antigenemia in patients accessing an antiretroviral treatment program in South Africa. Clin Infect Dis 48:856–862. doi:10.1086/597262.
    1. IMMY, Inc. 2701 IMMY Crag Kit insert. 2019. .
    1. Wake RM, Jarvis JN, Harrison TS, Govender NP. 2018. Point of care cryptococcal antigen screening: pipetting fingerprick blood improves performance of immuno-mycologics lateral flow assay. J Acquir Immune Defic Syndr 78:574–578. doi:10.1097/QAI.0000000000001721.
    1. Drain PK, Hong T, Krows M, Govere S, Thulare H, Wallis CL, Gosnell BI, Moosa M-Y, Bassett IV, Celum C. 2019. Validation of clinic-based cryptococcal antigen lateral flow assay screening in HIV-infected adults in South Africa. Sci Rep 9:2687. doi:10.1038/s41598-018-37478-7.
    1. Williams DA, Kiiza T, Kwizera R, Kiggundu R, Velamakanni S, Meya DB, Rhein J, Boulware DR. 2015. Evaluation of fingerstick cryptococcal antigen lateral flow assay in HIV-infected persons: a diagnostic accuracy study. Clin Infect Dis 61:464–467. doi:10.1093/cid/civ263.
    1. Vidal JE, Toniolo C, Paulino A, Colombo AL, Martins MD, Meira CD, Azevedo RG, Pereira-Chioccola VL, Gomes HR, Lazera MD, Oliveira AC. 2018. Performance of cryptococcal antigen lateral flow assay in serum, cerebrospinal fluid, whole blood, and urine in HIV-infected patients with culture-proven cryptococcal meningitis admitted at a Brazilian referral center. Rev Inst Med Trop São Paulo 60:e1.
    1. Brito-Santos F, Ferreira MdF, Trilles L, Muniz MdM, Veloso Dos Santos VG, Carvalho-Costa FA, Meyer W, Wanke B, Lazéra MDS. 2017. Preheating of urine improves the specificity of urinary cryptococcal antigen testing using the lateral flow assay. PLoS Negl Trop Dis 11:e0005304. doi:10.1371/journal.pntd.0005304.
    1. Longley N, Jarvis JN, Meintjes G, Boulle A, Cross A, Kelly N, Govender NP, Bekker L-G, Wood R, Harrison TS. 2016. Cryptococcal antigen screening in patients initiating ART in South Africa: a prospective cohort study. Clin Infect Dis 62:581–587. doi:10.1093/cid/civ936.
    1. Boulware DR, Rolfes MA, Rajasingham R, von Hohenberg M, Qin Z, Taseera K, Schutz C, Kwizera R, Butler EK, Meintjes G, Muzoora C, Bischof JC, Meya DB. 2014. Multisite validation of cryptococcal antigen lateral flow assay and quantification by laser thermal contrast. Emerg Infect Dis 20:45–53. doi:10.3201/eid2001.130906.
    1. Liechty CA, Solberg P, Were W, Ekwaru JP, Ransom RL, Weidle PJ, Downing R, Coutinho A, Mermin J. 2007. Asymptomatic serum cryptococcal antigenemia and early mortality during antiretroviral therapy in rural Uganda. Trop Med Int Health 12:929–935. doi:10.1111/j.1365-3156.2007.01874.x.
    1. Ford N, Shubber Z, Jarvis JN, Chiller T, Greene G, Migone C, Vitoria M, Doherty M, Meintjes G. 2018. CD4 cell count threshold for cryptococcal antigen screening of HIV-infected individuals: a systematic review and meta-analysis. Clin Infect Dis 66:S152–S159. doi:10.1093/cid/cix1143.
    1. Rajasingham R, Smith RM, Park BJ, Jarvis JN, Govender NP, Chiller TM, Denning DW, Loyse A, Boulware DR. 2017. Global burden of disease of HIV-associated cryptococcal meningitis: an updated analysis. Lancet Infect Dis 17:873–881. doi:10.1016/S1473-3099(17)30243-8.
    1. Jarvis JN, Percival A, Bauman S, Pelfrey J, Meintjes G, Williams GN, Longley N, Harrison TS, Kozel TR. 2011. Evaluation of a novel point-of-care cryptococcal antigen test on serum, plasma, and urine from patients with HIV-associated cryptococcal meningitis. Clin Infect Dis 53:1019–1023. doi:10.1093/cid/cir613.
    1. Landis JR, Koch GG. 1977. The measurement of observer agreement for categorical data. Biometrics 33:159–174. doi:10.2307/2529310.

Source: PubMed

3
订阅