Eye-Tracking Training Improves Inhibitory Control in Children with Attention-Deficit/Hyperactivity Disorder

Tsz Lok Lee, Michael K Yeung, Sophia L Sze, Agnes S Chan, Tsz Lok Lee, Michael K Yeung, Sophia L Sze, Agnes S Chan

Abstract

Disinhibition is a common sign among children with attention-deficit/hyperactivity disorder (ADHD). The present study examined the effect of computerized eye-tracking training to improve inhibitory control in ADHD children. Thirty-two ADHD children (mean age = 8.4 years) were recruited. Half of the participants underwent 240 min of eye-tracking training over two weeks (i.e., experimental group), while the other half did not receive any training (i.e., control group). After training, the experimental group exhibited significant improvements in neuropsychological tests of inhibition, such as faster reaction time in the incongruent condition of the Flanker test, more unique designs in the Category Fluency and Five-Point Tests, and a faster completion time in Trail 2 of the Children's Color Trail Test. The control group did not show significant changes in any of these tests. Our findings support the use of eye-tracking training to improve the inhibitory control of ADHD children.

Keywords: ADHD; cognitive training; eye-tracking; inhibition; mental flexibility.

Conflict of interest statement

A.S.C. is the founder and director of Pro-talent Association Ltd. (a non-profit organization) in Hong Kong. S.L.S. is a hired clinical psychologist under Pro-talent Association Ltd. All other authors have no conflicts of interests to disclose.

Figures

Figure 1
Figure 1
(a) Inhibitory control index. (b) Mean reaction time in the experimental (n = 16) and control groups (n = 16). “Pre” and “Post” refer to the test performance of participants before and after real training/no training period, respectively. Error bars represent 1 standard error ± the mean. Asterisks indicate the level of significance of t-tests (two-tailed). * p < 0.05, ** p < 0.01.
Figure 2
Figure 2
Performance in the (a) Category Fluency Test and Five-Point Test, in addition to the (b) Children’s Color Trails Test (CCTT) in the experimental (n = 16) and control (n = 16) groups. “Pre” and “Post” refer to the test performance of participants before and after real training/no training period, respectively. Error bars represent 1 standard error ± the mean. Asterisks indicate the level of significance of paired t-tests (two-tailed). ** p < 0.01, * p < 0.05, +p = 0.05.

References

    1. Miyake A., Friedman N.P., Emerson M.J., Witzki A.H., Howerter A., Wager T.D. The unity and diversity of executive functions and their contributions to complex “fronal lobe” tasks: A latent variable analysis. Cogn. Psychol. 2000;41:49–100. doi: 10.1006/cogp.1999.0734.
    1. Berlin L., Bohlin G. Response inhibition, hyperactivity, and conduct problems among preschool children. J. Clin. Child. Adolesc. Psychol. 2002;31:242–251. doi: 10.1207/S15374424JCCP3102_09.
    1. Shamir-Essakow G., Ungerer J.A., Rapee R.M. Attachment, behavioral inhibition, and anxiety in preschool children. J. Abnorm. Child. Psychol. 2005;33:131–143. doi: 10.1007/s10802-005-1822-2.
    1. St Clair-Thompson H.L., Gathercole S.E. Executive functions and achievements in school: Shifting, updating, inhibition, and working memory. Q. J. Exp. Psychol. 2006;59:745–759. doi: 10.1080/17470210500162854.
    1. Oyama A., Takeda S., Ito Y., Nakajima T., Takami Y., Takeya Y., Yamamoto K., Sugimoto K., Shimizu H., Shimamura M. novel Method for Rapid Assessment of cognitive impairment Using High-performance eye-tracking technology. Sci. Rep. 2019;9:1–9. doi: 10.1038/s41598-019-49275-x.
    1. Wilcockson T.D., Mardanbegi D., Xia B., Taylor S., Sawyer P., Gellersen H.W., Leroi I., Killick R., Crawford T.J. Abnormalities of saccadic eye movements in dementia due to Alzheimer’s disease and mild cognitive impairment. Aging. 2019;11:5389. doi: 10.18632/aging.102118.
    1. De Silva S., Dayarathna S., Ariyarathne G., Meedeniya D., Jayarathna S., Michalek A.M., Jayawardena G. A rule-based system for ADHD identification using eye movement data; Proceedings of the 2019 Moratuwa Engineering Research Conference (MERCon); Moratuwa, Sri Lanka. 3–5 July 2019; pp. 538–543.
    1. Varela Casal P., Lorena Esposito F., Morata Martínez I., Capdevila A., Solé Puig M., de la Osa N., Ezpeleta L., Perera i Lluna A., Faraone S.V., Ramos-Quiroga J.A. Clinical validation of eye vergence as an objective marker for diagnosis of ADHD in children. J. Atten Disord. 2019;23:599–614. doi: 10.1177/1087054717749931.
    1. Powell G., Wass S.V., Erichsen J.T., Leekam S.R. First evidence of the feasibility of gaze-contingent attention training for school children with autism. Autism. 2016;20:927–937. doi: 10.1177/1362361315617880.
    1. Antoniades C.A., Kennard C. Ocular motor abnormalities in neurodegenerative disorders. Eye. 2015;29:200–207. doi: 10.1038/eye.2014.276.
    1. Boxer A.L., Garbutt S., Seeley W.W., Jafari A., Heuer H.W., Mirsky J., Hellmuth J., Trojanowski J.Q., Huang E., DeArmond S. Saccade abnormalities in autopsy-confirmed frontotemporal lobar degeneration and Alzheimer disease. Arch. Neurol. 2012;69:509–517.
    1. Fletcher W.A., Sharpe J.A. Saccadic eye movement dysfunction in Alzheimer’s disease. Ann. Neurol. 1986;20:464–471. doi: 10.1002/ana.410200405.
    1. Chan F., Armstrong I.T., Pari G., Riopelle R.J., Munoz D.P. Deficits in saccadic eye-movement control in Parkinson’s disease. Neuropsychologia. 2005;43:784–796. doi: 10.1016/j.neuropsychologia.2004.06.026.
    1. Mosimann U.P., Müri R.M., Burn D.J., Felblinger J., O’Brien J.T., McKeith I.G. Saccadic eye movement changes in Parkinson’s disease dementia and dementia with Lewy bodies. Brain. 2005;128:1267–1276. doi: 10.1093/brain/awh484.
    1. Burrell J.R., Hornberger M., Carpenter R., Kiernan M.C., Hodges J.R. Saccadic abnormalities in frontotemporal dementia. Neurology. 2012;78:1816–1823. doi: 10.1212/WNL.0b013e318258f75c.
    1. Meyniel C., Rivaud-Pechoux S., Damier P., Gaymard B. Saccade impairments in patients with fronto-temporal dementia. J. Neurol. Neurosurg. Psychiatry. 2005;76:1581–1584. doi: 10.1136/jnnp.2004.060392.
    1. Fletcher-Watson S., Leekam S.R., Benson V., Frank M.C., Findlay J.M. Eye-movements reveal attention to social information in autism spectrum disorder. Neuropsychologia. 2009;47:248–257. doi: 10.1016/j.neuropsychologia.2008.07.016.
    1. Mosconi M.W., Kay M., D’cruz A., Seidenfeld A., Guter S., Stanford L.D., Sweeney J.A. Impaired inhibitory control is associated with higher-order repetitive behaviors in autism spectrum disorders. Psychol. Med. 2009;39:1559–1566. doi: 10.1017/S0033291708004984.
    1. Klein C.H., Raschke A., Brandenbusch A. Development of pro–and antisaccades in children with attention–deficit hyperactivity disorder (ADHD) and healthy controls. Psychophysiology. 2003;40:17–28. doi: 10.1111/1469-8986.00003.
    1. Nigg J.T., Butler K.M., Huang-Pollock C.L., Henderson J.M. Inhibitory processes in adults with persistent childhood onset ADHD. J. Consult. Clin. Psychol. 2002;70:153. doi: 10.1037/0022-006X.70.1.153.
    1. O’Driscoll G.A., Dépatie L., Holahan A.V., Savion-Lemieux T., Barr R.G., Jolicoeur C., Douglas V.I. Executive functions and methylphenidate response in subtypes of attention-deficit/hyperactivity disorder. Biol. Psychiatry. 2005;57:1452–1460. doi: 10.1016/j.biopsych.2005.02.029.
    1. De Oliveira Rosa V., Moreira-Maia C.R., Wagner F., Simioni A., de Fraga Bassotto C., Moritz G.R., Schmitz M., Rohde L.A.P. Computerized cognitive training for ADHD as an add-on treatment to stimulants: A randomized clinical trial. J. Atten. Disord. 2018;25:275–285. doi: 10.1177/1087054718816818.
    1. Marcelle E.T., Ho E.J., Kaplan M.S., Adler L.A., Castellanos F.X., Milham M.P. Cogmed working memory training presents unique implementation challenges in adults with ADHD. Front. Psychiatry. 2018;9:388. doi: 10.3389/fpsyt.2018.00388.
    1. Klingberg T., Fernell E., Olesen P.J., Johnson M., Gustafsson P., Dahlström K., Gillberg C.G., Forssberg H., Westerberg H. Computerized training of working memory in children with ADHD-a randomized, controlled trial. J. Am. Acad. Child. Adolesc. Psychiatry. 2005;44:177–186. doi: 10.1097/00004583-200502000-00010.
    1. Shalev L., Tsal Y., Mevorach C. Computerized progressive attentional training (CPAT) program: Effective direct intervention for children with ADHD. Child. Neuropsychol. 2007;13:382–388. doi: 10.1080/09297040600770787.
    1. Liu Q., Zhu X., Ziegler A., Shi J. The effects of inhibitory control training for preschoolers on reasoning ability and neural activity. Sci Rep. 2015;5:14200. doi: 10.1038/srep14200.
    1. Johnstone S.J., Roodenrys S., Phillips E., Watt A.J., Mantz S. A pilot study of combined working memory and inhibition training for children with AD/HD. Atten. Defic. Hyperact. Disord. 2010;2:31–42. doi: 10.1007/s12402-009-0017-z.
    1. Stern A., Malik E., Pollak Y., Bonne O., Maeir A. The efficacy of computerized cognitive training in adults with ADHD: A randomized controlled trial. J. Atten. Disord. 2016;20:991–1003. doi: 10.1177/1087054714529815.
    1. Munoz D.P., Armstrong I., Coe B. Using Eye Movements to Probe Development and Dysfunction. Elsevier; Amsterdam, The Netherlands: 2007. Eye movements; pp. 99–124.
    1. Peel T.R., Dash S., Lomber S.G., Corneil B.D. Frontal eye field inactivation diminishes superior colliculus activity, but delayed saccadic accumulation governs reaction time increases. J. Neurosci. 2017;37:11715–11730. doi: 10.1523/JNEUROSCI.2664-17.2017.
    1. Stuphorn V., Brown J.W., Schall J.D. Role of supplementary eye field in saccade initiation: Executive, not direct, control. J. Neurophysiol. 2010;103:801–816. doi: 10.1152/jn.00221.2009.
    1. Cameron I.G., Riddle J.M., D’Esposito M. Dissociable roles of dorsolateral prefrontal cortex and frontal eye fields during saccadic eye movements. Front. Hum. Neurosci. 2015;9:613. doi: 10.3389/fnhum.2015.00613.
    1. Goto Y., Hatakeyama K., Kitama T., Sato Y., Kanemura H., Aoyagi K., Sugita K., Aihara M. Saccade eye movements as a quantitative measure of frontostriatal network in children with ADHD. Brain Dev. 2010;32:347–355. doi: 10.1016/j.braindev.2009.04.017.
    1. American Psychiatric Association . Diagnostic and Statistical Manual of Mental Disorders (DSM-5®) American Psychiatric Pub; Washington, DC, USA: 2013.
    1. Faul F., Erdfelder E., Lang A.G., Buchner A. G* Power 3: A flexible statistical power analysis program for the social, behavioral, and biomedical sciences. Behav. Res. Methods. 2007;39:175–191. doi: 10.3758/BF03193146.
    1. Conners C.K. Conners’ Rating Scales—Revised: User’s Manual. Multi-Health Systems Incorporated; North Tonawanda, NY, USA: 1997.
    1. Eriksen B.A., Eriksen C.W. Effects of noise letters upon the identification of a target letter in a nonsearch task. Percept. Psychophys. 1974;16:143–149. doi: 10.3758/BF03203267.
    1. Brassell A.A., Shoulberg E.K., Pontifex M.B., Smith A.L., Delli Paoli A.G., Hoza B. Aerobic fitness and inhibition in young children: Moderating roles of ADHD status and age. J. Clin. Child Adolesc. Psychol. 2017;46:646–652. doi: 10.1080/15374416.2015.1063431.
    1. Réveillon M., Lazeyras F., Van Calster L., Cojan Y., Sander D., Hüppi P.S., Barisnikov K. Neural functional correlates of the impact of socio-emotional stimuli on performances on a flanker task in children aged 9–11 years. Neuropsychologia. 2018;145:106747. doi: 10.1016/j.neuropsychologia.2018.04.004.
    1. Yeung M.K., Lee T.L., Chan A.S. Neurocognitive development of flanker and Stroop interference control: A near-infrared spectroscopy study. Brain Cogn. 2020;143:105585. doi: 10.1016/j.bandc.2020.105585.
    1. Chan A.S., Poon M.W. Performance of 7-to 95-year-old individuals in a Chinese version of the category fluency test. J. Int. Neuropsychol. Soc. 1999;5:525–533. doi: 10.1017/S135561779956606X.
    1. Regard M., Strauss E., Knapp P. Children’s production on verbal and non-verbal fluency tasks. Percept. Mot. Skills. 1982;55:839–844. doi: 10.2466/pms.1982.55.3.839.
    1. Llorente A.M., Voigt R.G., Williams J., Frailey J.K., Satz P., Da’Elia L.F. Children’s color trails test 1 & 2: Test-retest reliability and factorial validity. Clin. Neuropsychol. 2009;23:645–660.
    1. García-Baos A., D’Amelio T., Oliveira I., Collins P., Echevarria C., Zapata L.P., Liddle E., Supèr H. Novel interactive eye-tracking game for training attention in children with attention-deficit/hyperactivity disorder. Prim. Care Comp. CNS Disord. 2019;21:19m02428. doi: 10.4088/PCC.19m02428.
    1. Kray J., Karbach J., Haenig S., Freitag C. Can task-switching training enhance executive control functioning in children with attention deficit/-hyperactivity disorder? Front. Hum. Neurosci. 2012;5:180. doi: 10.3389/fnhum.2011.00180.
    1. Munoz D.P., Armstrong I.T., Hampton K.A., Moore K.D. Altered control of visual fixation and saccadic eye movements in attention-deficit hyperactivity disorder. J. Neurophysiol. 2003;90:503–514. doi: 10.1152/jn.00192.2003.
    1. Tye C., Mercure E., Ashwood K.L., Azadi B., Asherson P., Johnson M.H., Bolton P., McLoughlin G. Neurophysiological responses to faces and gaze direction differentiate children with ASD, ADHD and ASD ADHD. Dev. Cogn. Neurosci. 2013;5:71–85. doi: 10.1016/j.dcn.2013.01.001.
    1. Au J., Gibson B.C., Bunarjo K., Buschkuehl M., Jaeggi S.M. Quantifying the difference between active and passive control groups in cognitive interventions using two meta-analytical approaches. J. Cogn. Enhanc. 2020;4:192–210. doi: 10.1007/s41465-020-00164-6.
    1. Lee T.L., Yeung M.K., Sze S.L., Chan A.S. Computerized eye-tracking training improves the saccadic eye movements of children with Attention-Deficit/Hyperactivity Disorder. Brain Sci. 2020;10:1016. doi: 10.3390/brainsci10121016.
    1. Friedman N.P., Miyake A. The relations among inhibition and interference control functions: A latent-variable analysis. J. Exp. Psychol. Gen. 2004;133:101–135. doi: 10.1037/0096-3445.133.1.101.

Source: PubMed

3
订阅