Optimal Implantation Site of Orthodontic Micro-Screws in the Mandibular Anterior Region Based on CBCT

Yannan Wang, Quan Shi, Feng Wang, Yannan Wang, Quan Shi, Feng Wang

Abstract

Background: To determine the optimal implantation site of orthodontic micro-screws based on cone beam computed tomography (CBCT) analysis in the mandibular anterior tooth region, provide a theoretical basis for orthodontic implant placement and improve post-implantation stability. Methods: Forty patients who underwent CBCT scanning were selected for this study. CBCT scanning was applied to measure the interradicular distance, buccolingual dimension, labial cortical bone thickness and lingual cortical bone thickness between mandibular anterior teeth at planes 2, 4, 6, and 8 mm below the alveolar ridge crest. The data were measured and collected to obtain a comprehensive evaluation of the specific site conditions of the alveolar bone. Results: The interradicular distance, buccolingual dimension and labial cortical bone thickness between the mandibular anterior teeth were positively correlated with the distance below the alveolar ridge crest (below 8 mm). The interradicular distance, buccolingual dimension, labial cortical bone thickness, and lingual cortical bone thickness were all greater than those in other areas between the lateral incisor root and canine incisor root 4, 6, and 8 mm below the alveolar ridge crest. Conclusion: The area between the lateral incisor root and the canine incisor root in planes 4, 6, and 8 mm from the alveolar ridge crest can be used as safe sites for implantation, while 8 mm below the alveolar ridge crest can be the optimal implantation site. An optimal implantation site can be 8 mm below the alveolar ridge crest between the lateral incisor root and the canine incisor root.

Keywords: CBCT; implantation site; mandibular anterior region; micro-screws; post- implantation stability.

Conflict of interest statement

The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Copyright © 2021 Wang, Shi and Wang.

Figures

FIGURE 1
FIGURE 1
CBCT scanning and 3D reconstruction: (A) horizontal view; (B) coronal view; (C) sagittal view; and (D) three-dimensional reconstruction.
FIGURE 2
FIGURE 2
CBCT measurement: interradicular distance in coronal view.
FIGURE 3
FIGURE 3
CBCT measurement: buccolingual dimension, labial cortical bone thickness and lingual cortical bone thickness in sagittal view.

References

    1. Aras I., Tuncer A. V. (2016). Comparison of anterior and posterior mini-implant-assisted maxillary incisor intrusion, Root resorption and treatment efficiency. Angle Orthod. 85015–85571. 10.2319/085015-571.1
    1. Brend P. J., Eppo B. W., Justin T., van der T., Ali T., Justin P. (2020). Esthetics and Patient-reported outcomes of implants placed with guided bone regeneration and complete native bone: a prospective controlled clinical trial. Int. J. Oral Maxillofac. Implants 35 406–414. 10.11607/jomi.7751
    1. Chang H. P., Tseng Y. C. (2014). Miniscrew implant applications in contemporary orthodontics. Kaohsiung J. Med. Sci. 30 111–115. 10.1016/j.kjms.2013.11.002
    1. Cornelis M. A., Scheffler N. R., Clerck H. J. D., Tulloch J. F. C., Behets C. N. (2007). Systematic review of the experimental use of temporary skeletal anchorage devices in orthodontics. Am. J. Orthod. Dentofacial Orthoped. 131 (4-supp-S) S52–S58. 10.1016/j.ajodo.2006.05.033
    1. Diniz-Freitas M., Seoane-Romero J., Fernández-Varela M., Abeleira M. T., Limeres J. (2015). Cone beam computed tomography evaluation of palatal bone thickness for miniscrew placement in down’s syndrome. Arch Oral Biol. 60 1333–1339. 10.1016/j.archoralbio.2015.06.013
    1. Ishihara Y., Kuroda S., Sugawara Y., Balam T. A., Takano-Yamamoto T., Yamashiro T. (2013). Indirect usage of miniscrew anchorage to intrude overerupted mandibular incisors in a class ii patient with a deep overbite. Am. J. Orthod. Dentofacial Orthop. 143 S113–S124. 10.1016/j.ajodo.2012.09.001
    1. Kuroda S., Tanaka E. (2014). Risks and complications of miniscrew anchorage in clinical orthodontics. Jpn. Dental Sci. Rev. 50 79–85. 10.1016/j.jdsr.2014.05.001
    1. Ludwig B., Glasl B., Kinzinger G. S., Lietz T., Lisson J. A. (2011). Anatomical guidelines for miniscrew insertion: vestibular interradicular sites. J. Clin. Orthod. JCO 45 165–173.
    1. Michele T., Cattaneo P. M., Francesco M., Claudio C. (2017). Average interradicular sites for miniscrew insertion: should dental crowding be considered? Dental Press J. Orthod. 22 90–97. 10.1590/2177-6709.22.5.090-097.oar
    1. Mimura H. (2008). Treatment of severe bimaxillary protrusion with miniscrew anchorage: treatment and complications. Aust. Orthod. J. 24 156–163.
    1. Min K. I., Kim S. C., Kang K. H., Cho J. H., Lee E. H., Chang N. Y., et al. (2012). Root proximity and cortical bone thickness effects on the success rate of orthodontic micro-implants using cone beam computed tomography. Angle Orthod. 82 1014–1021. 10.2319/091311-593.1
    1. Mohammed H., Wafaie K., Rizk M. Z., Almuzian M., Sosly R., David R. B. (2018). Role of anatomical sites and correlated risk factors on the survival of orthodontic miniscrew implants: a systematic review and meta-analysis. Progress Orthod. 19:36. 10.1186/s40510-018-0225-1
    1. Poon Y. C., Chang H. P., Tseng Y. C., Chou S. T., Pan C. Y. (2015). Palatal bone thickness and associated factors in adult miniscrew placements: a cone-beam computed tomography study. Kaohsiung J. Med. Sci. 31 265–270. 10.1016/j.kjms.2015.02.002
    1. Prasanpong P., Suwannee L., Suchaya P. D., Boonpratham S., Santiwong P. (2014). Stability of miniscrews with different continuous orthodontic forces as measured by cone-beam computed tomography. Orthod. Waves 73 48–54. 10.1016/j.odw.2014.03.002
    1. Qiu L. L., Li S., Bai Y. X. (2016). Preliminary safety and stability assessment of orthodontic miniscrew implantation guided by surgical template based on cone-beam CT images. Chin. J. Stomatol. 51:336.
    1. Rodriguez J. C., Suarez F., Chan H. L., Padial-Molina M., Wang H. L. (2014). Implants for orthodontic anchorage: success rates and reasons of failures. Implant Dentistry 23:155. 10.1097/id.0000000000000048
    1. Sahoo S. N., Pattanaik S., Nayak T. K., Nanda S. B. (2018). Evaluation of post operative soft tissue complications of orthodontic mini-implants at different loading times-an in-vivo study. Indian J. Public Health Res. Dev. 9:1103. 10.5958/0976-5506.2018.01602.9
    1. Saito I., Yamaki M., Hanada K. (2005). Nonsurgical treatment of adult open bite using edgewise appliance combined with high-pull headgear and class iii elastics. Angle Orthod. 75 277–283.
    1. Sarul M., Minch L., Park H. S., Antoszewska-Smith J. (2014). Effect of the length of orthodontic mini-screw implants on their long-term stability: a prospective study. Angle Orthod. 85:149. 10.2319/112113-857.1
    1. Sfondrini M. F., Gandini P., Alcozer R., Pekka K. V., Scribante A. (2018). Failure load and stress analysis of orthodontic miniscrews with different transmucosal collar diameter. J. Mech. Behav. Biomed. Mater. 87 132–137. 10.1016/j.jmbbm.2018.07.032
    1. Shigeeda T. (2014). Root proximity and stability of orthodontic anchor screws[J]. J. Oral Sci. 56 59–65. 10.2334/josnusd.56.59
    1. Sugawara Y., Kuroda S., Tamamura N., Takano-Yamamoto T. (2008). Adult patient with mandibular protrusion and unstable occlusion treated with titanium screw anchorage. Am. J. Orthod. Dentofacial Orthop. 133 102–111. 10.1016/j.ajodo.2006.06.020
    1. Teng F., Chen G., Xu T. (2016). Distalization of the maxillary and mandibular dentitions with miniscrew anchorage in a patient with moderate class i bimaxillary dentoalveolar protrusion. Am. J. Orthod. Dentofacial Orthop. 149 401–410. 10.1016/j.ajodo.2015.04.041
    1. Tepedino M., Cornelis M. A., Chimenti C., Cattaneo P. M. (2018). Correlation between tooth size-arch length discrepancy and interradicular distances measured on CBCT and panoramic radiograph: an evaluation for miniscrew insertion. Dental Press J. Orthod. 23 39. e1–39. e13. 10.1590/2177-6709.23.5.39.e1-13.onl
    1. Wang X. D., Lei F. F., Liu D. W., Zhang J. N., Liu W. T., Song Y., et al. (2017). Miniscrew-assisted customized lingual appliances for predictable treatment of skeletal Class II malocclusion with severe deep overbite and overjet. Am. J. Orthod. Dentofacial Orthop. 152 104–115. 10.1016/j.ajodo.2016.06.053
    1. Xiang C., Xiang-Feng Z., Qian-Qian H., Yi Z., Feng Y. U., Hua-Qiao W., et al. (2018). Evaluation of the changes of alveolar bone around the upper incisors after retraction with mini implant anchorage using cone-beam ct. Shanghai J. Stomatol. 27 150–155.
    1. Yaqi D., Yannan S., Tianmin X. (2016). Evaluation of root resorption after comprehensive orthodontic treatment using cone beam computed tomography (CBCT): a meta-analysis. BMC Oral Health 18:116. 10.1186/s12903-018-0579-2
    1. Yong-Qing Y., Yi-Ming G. (2011). A clinical study on the stability of miniscrew anchorage in orthodontics. Shanghai J. Stomatol. 20 540.
    1. Zheng J., Yeke W., Wenlu J., Lixing Z., Dian J., Nian Z., et al. (2016). Factors affecting the clinical success rate of miniscrew implants for orthodontic treatment. Int. J. Oral Maxillofacial Implants 31:835. 10.11607/jomi.4197

Source: PubMed

3
订阅