Target fortification of breast milk: how often should milk analysis be done?

Niels Rochow, Gerhard Fusch, Bianca Zapanta, Anaam Ali, Sandip Barui, Christoph Fusch, Niels Rochow, Gerhard Fusch, Bianca Zapanta, Anaam Ali, Sandip Barui, Christoph Fusch

Abstract

Target fortification (TFO) reduces natural macronutrient variation in breast milk (BM). Daily BM analysis for TFO increases neonatal intensive care unit work load by 10-15 min/patient/day and may not be feasible in all nurseries. The variation of macronutrient intake when BM analysis is done for various schedules was studied. In an observational study, we analyzed 21 subsequent samples of native 24-h BM batches, which had been prepared for 10 healthy infants (gestational age 26.1 ± 1.3 weeks, birth weight: 890 ± 210 g). Levels of protein and fat (validated near-infrared milk analyzer), as well as lactose (UPLC-MS/MS) generated the database for modelling TFO to meet recommendations of European Society for Paediatric Gastroenterology Hepatology and Nutrition. Intake of macronutrients and energy were calculated for different schedules of BM measurements for TFO (n = 1/week; n = 2/week; n = 3/week; n = 5/week; n = 7/week) and compared to native and fixed dose fortified BM. Day-to-day variation of macronutrients (protein 20%, carbohydrate 13%, fat 17%, energy 10%) decreased as the frequency of milk analysis increased and was almost zero for protein and carbohydrate with daily measurements. Measurements two/week led to mean macronutrient intake within a range of ± 5% of targeted levels. A reduced schedule for macronutrient measurement may increase the practical use of TFO. To what extent the day-to-day variation affects growth while mean intake is stable needs to be studied.

Figures

Figure 1
Figure 1
Variation of macronutrient and energy content in target fortified breast milk (BM) for different frequencies of measurements compared with native BM and fixed dose fortified (FDF) BM. The first boxplot of each group represents all samples (n = 210), followed by ten boxplots with data (n = 21) for individual subjects.
Figure 2
Figure 2
Percentage of samples with the deviation of macronutrients and energy content from ESPHGAN recommendations in single breast milk (BM) batches for native BM, fixed dose fortification (FDF) and target fortification (TFO) (five different schedules). The X-axis shows stratified ranges (deviation from target levels). The sum of relative frequencies per schedule is 100%.

References

    1. Agostoni C., Buonocore G., Carnielli V.P., de Curtis M., Darmaun D., Decsi T., Domellof M., Embleton N.D., Fusch C., Genzel-Boroviczeny O., et al. Enteral nutrient supply for preterm infants: Commentary from the european society of paediatric gastroenterology, hepatology and nutrition committee on nutrition. J. Pediatr. Gastroenterol. Nutr. 2010;50:85–91. doi: 10.1097/MPG.0b013e3181adaee0.
    1. Eidelman A.I., Schanler R.J., Johnston M., Landers S., Noble L., Szucs K., Viehmann L. Breastfeeding and the use of human milk. Pediatrics. 2012;129:e827–e841. doi: 10.1542/peds.2011-3552.
    1. Ziegler E.E. Meeting the nutritional needs of the low-birth-weight infant. Ann. Nutr. Metab. 2011;58:8–18. doi: 10.1159/000323381.
    1. Fenton T.R., Kim J.H. A systematic review and meta-analysis to revise the fenton growth chart for preterm infants. BMC Pediatr. 2013;13:59. doi: 10.1186/1471-2431-13-59.
    1. Rochow N., Jochum F., Redlich A., Korinekova Z., Linnemann K., Weitmann K., Boehm G., Muller H., Kalhoff H., Topp H., et al. Fortification of breast milk in vlbw infants: Metabolic acidosis is linked to the composition of fortifiers and alters weight gain and bone mineralization. Clin. Nutr. 2011;30:99–105. doi: 10.1016/j.clnu.2010.07.016.
    1. Reis B.B., Hall R.T., Schanler R.J., Berseth C.L., Chan G., Ernst J.A., Lemons J., Adamkin D., Baggs G., O’Connor D. Enhanced growth of preterm infants fed a new powdered human milk fortifier: A randomized, controlled trial. Pediatrics. 2000;106:581–588. doi: 10.1542/peds.106.3.581.
    1. Rochow N., Fusch G., Choi A., Chessell L., Elliott L., McDonald K., Kuiper E., Purcha M., Turner S., Chan E., et al. Target fortification of breast milk with fat, protein, and carbohydrates for preterm infants. J. Pediatr. 2013;163:1001–1007. doi: 10.1016/j.jpeds.2013.04.052.
    1. Saarela T., Kokkonen J., Koivisto M. Macronutrient and energy contents of human milk fractions during the first six months of lactation. Acta Paediatr. 2005;94:1176–1181. doi: 10.1080/08035250510036499.
    1. Weber A., Loui A., Jochum F., Buhrer C., Obladen M. Breast milk from mothers of very low birthweight infants: Variability in fat and protein content. Acta Paediatr. 2001;90:772–775. doi: 10.1111/j.1651-2227.2001.tb02803.x.
    1. Polberger S. New approaches to optimizing early diets. Nestle Nutr. Workshop Ser Pediatr. Program. 2009;63:195–204.
    1. Ereman R.R., Lonnerdal B., Dewey K.G. Maternal sodium intake does not affect postprandial sodium concentrations in human milk. J. Nutr. 1987;117:1154–1157.
    1. Lonnerdal B., Forsum E., Hambraeus L. A longitudinal study of the protein, nitrogen, and lactose contents of human milk from swedish well-nourished mothers. Am. J. Clin. Nutr. 1976;29:1127–1133.
    1. Fusch G., Rochow N., Choi A., Fusch S., Poeschl S., Ubah A.O., Lee S.Y., Raja P., Fusch C. Rapid measurement of macronutrients in breast milk: How reliable are infrared milk analyzers? Clin. Nutr. 2014 doi: 10.1016/j.clnu.2014.05.005.
    1. Arslanoglu S., Moro G.E., Ziegler E.E. Adjustable fortification of human milk fed to preterm infants: Does it make a difference? J. Perinatol.: Off. J. Calif. Perinat. Assoc. 2006;26:614–621. doi: 10.1038/sj.jp.7211571.
    1. Henriksen C., Westerberg A.C., Ronnestad A., Nakstad B., Veierod M.B., Drevon C.A., Iversen P.O. Growth and nutrient intake among very-low-birth-weight infants fed fortified human milk during hospitalisation. Br. J. Nutr. 2009;102:1179–1186. doi: 10.1017/S0007114509371755.
    1. Fusch G., Choi A., Rochow N., Fusch C. Quantification of lactose content in human and cow’s milk using uplc-tandem mass spectrometry. J. Chromatogr. B Anal. Technol. Biomed. Life Sci. 2011;879:3759–3762. doi: 10.1016/j.jchromb.2011.09.053.
    1. Choi A., Fusch G., Rochow N., Sheikh N., Fusch C. Establishment of micromethods for macronutrient contents analysis in breast milk. Matern. Child Nutr. 2013 doi: 10.1111/mcn.12053.
    1. Chang Y.C., Chen C.H., Lin M.C. The macronutrients in human milk change after storage in various containers. Pediatr. Neonatol. 2012;53:205–209. doi: 10.1016/j.pedneo.2012.04.009.
    1. Garcia-Lara N.R., Escuder-Vieco D., Garcia-Algar O., De la Cruz J., Lora D., Pallas-Alonso C. Effect of freezing time on macronutrients and energy content of breastmilk. Breastfeed. Med. Off. J. Acad. Breastfeed. Med. 2012;7:295–301. doi: 10.1089/bfm.2011.0079.
    1. Vieira A.A., Soares F.V., Pimenta H.P., Abranches A.D., Moreira M.E. Analysis of the influence of pasteurization, freezing/thawing, and offer processes on human milk’s macronutrient concentrations. Early Hum. Dev. 2011;87:577–580. doi: 10.1016/j.earlhumdev.2011.04.016.
    1. Carpenter K.J. A short history of nutritional science: Part 2 (1885–1912) J. Nutr. 2003;133:975–984.
    1. R Core Team . R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing; Vienna, Austria: 2014.
    1. Gidrewicz D.A., Fenton T.R. A systematic review and meta-analysis of the nutrient content of preterm and term breast milk. BMC Pediatr. 2014;14:216. doi: 10.1186/1471-2431-14-216.
    1. Nommsen L.A., Lovelady C.A., Heinig M.J., Lonnerdal B., Dewey K.G. Determinants of energy, protein, lipid, and lactose concentrations in human milk during the first 12 mo of lactation: The darling study. Am. J. Clin. Nutr. 1991;53:457–465.
    1. Chapelot D., Marmonier C., Aubert R., Allegre C., Gausseres N., Fantino M., Louis-Sylvestre J. Consequence of omitting or adding a meal in man on body composition, food intake, and metabolism. Obesity. 2006;14:215–227. doi: 10.1038/oby.2006.28.
    1. Gunnerud U., Holst J.J., Ostman E., Bjorck I. The glycemic, insulinemic and plasma amino acid responses to equi-carbohydrate milk meals, a pilot- study of bovine and human milk. Nutr. J. 2012;11:83. doi: 10.1186/1475-2891-11-83.
    1. Nilsson M., Holst J.J., Bjorck I.M. Metabolic effects of amino acid mixtures and whey protein in healthy subjects: Studies using glucose-equivalent drinks. Am. J. Clin. Nutr. 2007;85:996–1004.
    1. Dewey K.G., Heinig M.J., Nommsen L.A., Lonnerdal B. Maternal vs. infant factors related to breast milk intake and residual milk volume: The darling study. Pediatrics. 1991;87:829–837.
    1. Van den Akker C.H., Schierbeek H., Dorst K.Y., Schoonderwaldt E.M., Vermes A., Duvekot J.J., Steegers E.A., van Goudoever J.B. Human fetal amino acid metabolism at term gestation. Am. J. Clin. Nutr. 2009;89:153–160. doi: 10.3945/ajcn.2008.26553.
    1. Van den Akker C.H., Schierbeek H., Minderman G., Vermes A., Schoonderwaldt E.M., Duvekot J.J., Steegers E.A., van Goudoever J.B. Amino acid metabolism in the human fetus at term: Leucine, valine, and methionine kinetics. Pediatr. Res. 2011;70:566–571. doi: 10.1203/PDR.0b013e31823214d1.
    1. Merritt T.A., Pillers D., Prows S.L. Early NICU discharge of very low birth weight infants: A critical review and analysis. Semin. Neonatol.: SN. 2003;8:95–115. doi: 10.1016/S1084-2756(02)00219-1.
    1. Whyte R.K. Neonatal management and safe discharge of late and moderate preterm infants. Semin. Fetal Neonat. Med. 2012;17:153–158. doi: 10.1016/j.siny.2012.02.004.
    1. Altimier L., Eichel M., Warner B., Tedeschi L., Brown B. Developmental care: Changing the NICU physically and behaviorally to promote patient outcomes and costs. Neonat. Intens. Care. 2004;17:35–39.
    1. Melnyk B.M., Feinstein N.F., Alpert-Gillis L., Fairbanks E., Crean H.F., Sinkin R.A., Stone P.W., Small L., Tu X., Gross S.J. Reducing premature infants’ length of stay and improving parents’ mental health outcomes with the creating opportunities for parent empowerment (COPE) neonatal intensive care unit program: A randomized, controlled trial. Pediatrics. 2006;118:e1414–e1427. doi: 10.1542/peds.2005-2580.

Source: PubMed

3
订阅