Investigation of Antibacterial and Antiinflammatory Activities of Proanthocyanidins from Pelargonium sidoides DC Root Extract

Aiste Jekabsone, Inga Sile, Andrea Cochis, Marina Makrecka-Kuka, Goda Laucaityte, Elina Makarova, Lia Rimondini, Rasa Bernotiene, Lina Raudone, Evelina Vedlugaite, Rasa Baniene, Alina Smalinskiene, Nijole Savickiene, Maija Dambrova, Aiste Jekabsone, Inga Sile, Andrea Cochis, Marina Makrecka-Kuka, Goda Laucaityte, Elina Makarova, Lia Rimondini, Rasa Bernotiene, Lina Raudone, Evelina Vedlugaite, Rasa Baniene, Alina Smalinskiene, Nijole Savickiene, Maija Dambrova

Abstract

The study explores antibacterial, antiinflammatory and cytoprotective capacity of Pelargonium sidoides DC root extract (PSRE) and proanthocyanidin fraction from PSRE (PACN) under conditions characteristic for periodontal disease. Following previous finding that PACN exerts stronger suppression of Porphyromonas gingivalis compared to the effect on commensal Streptococcus salivarius, the current work continues antibacterial investigation on Staphylococcus aureus, Staphylococcus epidermidis, Aggregatibacter actinomycetemcomitans and Escherichia coli. PSRE and PACN are also studied for their ability to prevent gingival fibroblast cell death in the presence of bacteria or bacterial lipopolysaccharide (LPS), to block LPS- or LPS + IFNγ-induced release of inflammatory mediators, gene expression and surface antigen presentation. Both PSRE and PACN were more efficient in suppressing Staphylococcus and Aggregatibacter compared to Escherichia, prevented A. actinomycetemcomitans- and LPS-induced death of fibroblasts, decreased LPS-induced release of interleukin-8 and prostaglandin E2 from fibroblasts and IL-6 from leukocytes, blocked expression of IL-1β, iNOS, and surface presentation of CD80 and CD86 in LPS + IFNγ-treated macrophages, and IL-1β and COX-2 expression in LPS-treated leukocytes. None of the investigated substances affected either the level of secretion or expression of TNFα. In conclusion, PSRE, and especially PACN, possess strong antibacterial, antiinflammatory and gingival tissue protecting properties under periodontitis-mimicking conditions and are suggestable candidates for treatment of the disease.

Keywords: Pelargonium sidoides DC root extract; bacteriotoxicity; fibroblasts; gene expression; inflammatory cytokines; leukocytes; macrophages; periodontitis; proanthocyanidins.

Conflict of interest statement

The authors declare no conflict of interest.

Figures

Figure 1
Figure 1
Antibacterial activity of Pelargonium sidoides root extract (PSRE) and proanthocyanidins from PSRE (PACN) towards Staphylococcus aureus (a), S. epidermidis (b), Escherichia coli (c) and Aggregatibacter actinomycetemcomitans (d). RFU—relative fluorescence units. Bars represent means and standard deviations of six experimental replicates. * = p < 0.05 vs. untreated control.
Figure 2
Figure 2
The effect of Pelargonium sidoides root extract (PSRE) and proanthocyanidins from PSRE (PACN) on human gingival fibroblast viability in co-culture “race for the surface” assay. Human gingival fibroblasts were infected with A. actinomycetemcomitans (a) or S. aureus (b); bars represent means and standard deviations of six experimental repeats. “Control” represents not infected cells, and “n.d.” means there were no detectable cells in the samples. In (c), there are representative images of human gingival fibroblasts with A. actinomycetemcomitans after 24 h of infection.
Figure 3
Figure 3
The effect of Pelargonium sidoides root extract (PSRE) and proanthocyanidins from PSRE (PACN) on the viability of gingival fibroblasts affected by bacterial lipopolysaccharide (LPS). (a) Representative fluorescent images after cell treatment with LPS and 100 μg/mL PSRE or PACN and nuclear viability staining; propidium iodide-positive necrotic nuclei are red, all nuclei are stained blue with Hoechst33342. (b) Quantitative viability results. Fifty and 100 represent the concentrations (μg/mL). The data are presented as means plus standard deviation of five experiments. *—significant difference compared to the untreated control, and #—significant difference compared to the LPS only treatment, p < 0.05.
Figure 4
Figure 4
The effect of Pelargonium sidoides root extract (PSRE) and proanthocyanidins from PSRE (PACN) on LPS-induced caspase-8 (a) and caspase-3 (b) activation in gingival fibroblasts. Fifty and 100 represent the concentrations expressed in μg/mL. The data are presented as means with standard deviation of seven experimental repeats. *—significant difference compared to untreated control, #—significant difference compared to LPS only treatment and &—significant difference compared to LPS plus 50 μg/mL PSRE treatment, p < 0.05.
Figure 5
Figure 5
The effect of Pelargonium sidoides root extract (PSRE) and proanthocyanidins from PSRE (PACN) on (a) interleukin-8 (IL-8) and (b) prostaglandin E2 (PGE2) secretion from gingival fibroblasts, and (c) interleukin-6 (IL-6) secretion from peripheral blood mononuclear cells after LPS treatment. Fifty and 100 represent the concentrations (μg/mL). The data are presented as means and standard deviations of seven experiments. *—significant difference compared to untreated control, #—significant difference compared to LPS only treatment and &—significant difference compared to LPS plus a 50 μg/mL PSRE treatment, p < 0.05.
Figure 6
Figure 6
The effect of Pelargonium sidoides root extract (PSRE) and proanthocyanidins from PSRE (PACN) on proinflammatory gene expression in bone marrow-derived macrophages (ac) and peripheral blood mononuclear cells (df) after LPS or LPS and IFN- stimulation. (a,d) IL-1β (a,b) iNOS, (c,f) TNF- and (e) COX-2. The data are expressed as a fold change of glucose-6-phosphate isomerase gene transcription and presented as mean ± SD of three independent measurements. *—significantly different from the LPS-treated samples (ANOVA followed by a Tukey’s multiple comparison test, p < 0.05).
Figure 7
Figure 7
Expression of proinflammatory cell surface markers CD80 and CD86 analyzed by flow cytometry 24 h after treating LPS + IFNγ-activated BMDMs with PSRE and PACN. (a) Characteristic mouse macrophage marker F4/80-positive cells were gated for double CD80 and CD86 analysis as a measure of M1 macrophage phenotype (top right small quadrant). Representative plots of a total of three independent experiments in three replicates are presented in the bottom. (b) Mean ± SD of three independent measurements in three parallels. Differences between the measurements were tested using a one-way ANOVA followed by a Tukey’s multiple comparison test. *—significantly different from the LPS and IFN-γ treatment (p < 0.05).

References

    1. Loesche W.J., Grossman N.S. Periodontal Disease as a Specific, albeit Chronic, Infection: Diagnosis and Treatment. Clin. Microbiol. Rev. 2001;14:727. doi: 10.1128/CMR.14.4.727-752.2001.
    1. Khan S.A., Kong E.F., Meiller T.F., Jabra-Rizk M.A. Periodontal Diseases: Bug Induced, Host Promoted. PLoS Pathog. 2015;11:e1004952. doi: 10.1371/journal.ppat.1004952.
    1. Soares G.M.S., Figueiredo L.C., Faveri M., Cortelli S.C., Duarte P.M., Feres M. Mechanisms of action of systemic antibiotics used in periodontal treatment and mechanisms of bacterial resistance to these drugs. J. Appl. Oral Sci. 2012;20:295–309. doi: 10.1590/S1678-77572012000300002.
    1. Pareek V., Gupta R., Panwar J. Do physico-chemical properties of silver nanoparticles decide their interaction with biological media and bactericidal action? A review. Mater. Sci. Eng. C. 2018;90:739–749. doi: 10.1016/j.msec.2018.04.093.
    1. Nakatsuji T., Chen T.H., Narala S., Chun K.A., Two A.M., Yun T., Shafiq F., Kotol P.F., Bouslimani A., Melnik A.V., et al. Antimicrobials from human skin commensal bacteria protect against Staphylococcus aureus and are deficient in atopic dermatitis. Sci. Transl. Med. 2017;9 doi: 10.1126/scitranslmed.aah4680.
    1. Avila M., Ojcius D.M., Yilmaz O. The oral microbiota: Living with a permanent guest. DNA Cell Biol. 2009;28:405–411. doi: 10.1089/dna.2009.0874.
    1. Brambilla E., Ionescu A., Gagliani M., Cochis A., Arciola C.R., Rimondini L. Biofilm Formation on Composite Resins for Dental Restorations: An in Situ Study on the Effect of Chlorhexidine Mouthrinses. Int. J. Artif. Organs. 2012;35:792–799. doi: 10.5301/ijao.5000165.
    1. Azzimonti B., Cochis A., Beyrouthy M., Iriti M., Uberti F., Sorrentino R., Landini M.M., Rimondini L., Varoni E.M. Essential Oil from Berries of Lebanese Juniperus excelsa M. Bieb Displays Similar Antibacterial Activity to Chlorhexidine but Higher Cytocompatibility with Human Oral Primary Cells. Molecules. 2015;20:9344–9357. doi: 10.3390/molecules20059344.
    1. Singh N., Savita S., Rithesh K., Shivanand S. Phytotherapy: A novel approach for treating periodontal disease. J. Pharm. Biomed. Sci. JPBMS. 2010;6:205–210.
    1. Santos-Buelga C., Scalbert A. Proanthocyanidins and tannin-like compounds—Nature, occurrence, dietary intake and effects on nutrition and health. J. Sci. Food Agric. 2000;80:1094–1117. doi: 10.1002/(SICI)1097-0010(20000515)80:7<1094::AID-JSFA569>;2-1.
    1. Aron P.M., Kennedy J.A. Flavan-3-ols: Nature, occurrence and biological activity. Mol. Nutr. Food Res. 2008;52:79–104. doi: 10.1002/mnfr.200700137.
    1. Raudone L., Vilkickyte G., Pitkauskaite L., Raudonis R., Vainoriene R., Motiekaityte V., Raudone L., Vilkickyte G., Pitkauskaite L., Raudonis R., et al. Antioxidant Activities of Vaccinium vitis-idaea L. Leaves within Cultivars and Their Phenolic Compounds. Molecules. 2019;24:844. doi: 10.3390/molecules24050844.
    1. Balalaie A., Rezvani M.B., Basir M.M. Dual function of proanthocyanidins as both MMP inhibitor and crosslinker in dentin biomodification: A literature review. Dent. Mater. J. 2018;37:173–182. doi: 10.4012/dmj.2017-062.
    1. Shahzad M., Millhouse E., Culshaw S., Edwards C.A., Ramage G., Combet E. Selected dietary (poly)phenols inhibit periodontal pathogen growth and biofilm formation. Food Funct. 2015;6:719–729. doi: 10.1039/C4FO01087F.
    1. Kolodziej H. Aqueous ethanolic extract of the roots of Pelargonium sidoides—New scientific evidence for an old anti-infective phytopharmaceutical. Planta Med. 2008;74:661–666. doi: 10.1055/s-2007-993778.
    1. Kayser O., Kolodziej H. Antibacterial Activity of Extracts and Constituents of Pelargonium sidoides and Pelargonium reniforme. Planta Med. 1997;63:508–510. doi: 10.1055/s-2006-957752.
    1. Kolodziej H. Antimicrobial, antiviral and immunomodulatory activity studies of pelargonium sidoides (EPs® 7630) in the context of health promotion. Pharmaceuticals. 2011;4:1295–1314. doi: 10.3390/ph4101295.
    1. Janecki A., Conrad A., Engels I., Frank U., Kolodziej H. Evaluation of an aqueous-ethanolic extract from Pelargonium sidoides (EPs® 7630) for its activity against group A-streptococci adhesion to human HEp-2 epithelial cells. J. Ethnopharmacol. 2011;133:147–152. doi: 10.1016/j.jep.2010.09.018.
    1. Savickiene N., Jekabsone A., Raudone L., Abdelgeliel A., Cochis A., Rimondini L., Makarova E., Grinberga S., Pugovics O., Dambrova M., et al. Efficacy of Proanthocyanidins from Pelargonium sidoides Root Extract in Reducing P. gingivalis Viability While Preserving Oral Commensal S. salivarius. Materials. 2018;11:1499. doi: 10.3390/ma11091499.
    1. Gristina A.G., Naylor P.T., Myrvik Q. Molecular Mechanisms of Microbial Adhesion. Springer; New York, NY, USA: 1989. The Race for the Surface: Microbes, Tissue Cells, and Biomaterials; pp. 177–211.
    1. Hellström J., Sinkkonen J., Maarit Karonen A., Mattila P. Isolation and Structure Elucidation of Procyanidin Oligomers from Saskatoon Berries (Amelanchier alnifolia) J. Agric. Food Chem. 2006 doi: 10.1021/jf062441t.
    1. Buttery J.E., Lim H.H., De Witt G.F. The use of NADH as a standard in a modified PMS-INT colorimetric assay of lactate dehydrogenase. Clin. Chim. Acta. 1976;73:109–115. doi: 10.1016/0009-8981(76)90311-9.
    1. Chang H.Y., Yang X. Proteases for cell suicide: Functions and regulation of caspases. Microbiol. Mol. Biol. Rev. 2000;64:821–846. doi: 10.1128/MMBR.64.4.821-846.2000.
    1. Rashmi S., Alka D., Ramakant S. Neutrophils in health and disease: An overview. J. Oral Maxillofac. Pathol. 2006;10:3. doi: 10.4103/0973-029X.37740.
    1. Dongari-Bagtzoglou A.I., Ebersole J.L. Increased Presence of Interleukin-6 (IL-6) and IL-8 Secreting Fibroblast Subpopulations in Adult Periodontitis. J. Periodontol. 1998;69:899–910. doi: 10.1902/jop.1998.69.8.899.
    1. Arango Duque G., Descoteaux A. Macrophage cytokines: Involvement in immunity and infectious diseases. Front. Immunol. 2014;5:491. doi: 10.3389/fimmu.2014.00491.
    1. Xue Q., Yan Y., Zhang R., Xiong H. Regulation of iNOS on Immune Cells and Its Role in Diseases. Int. J. Mol. Sci. 2018;19:3805. doi: 10.3390/ijms19123805.
    1. Held T.K., Weihua X., Yuan L., Kalvakolanu D.V., Cross A.S. Gamma interferon augments macrophage activation by lipopolysaccharide by two distinct mechanisms, at the signal transduction level and via an autocrine mechanism involving tumor necrosis factor alpha and interleukin-1. Infect. Immun. 1999;67:206–212.
    1. Barrett J.P., Costello D.A., O’Sullivan J., Cowley T.R., Lynch M.A. Bone marrow-derived macrophages from aged rats are more responsive to inflammatory stimuli. J. Neuroinflammation. 2015;12:67. doi: 10.1186/s12974-015-0287-7.
    1. Zhou L., Bi C., Gao L., An Y., Chen F., Chen F. Macrophage polarization in human gingival tissue in response to periodontal disease. Oral Dis. 2019;25:265–273. doi: 10.1111/odi.12983.
    1. Orecchioni M., Ghosheh Y., Pramod A.B., Ley K. Macrophage Polarization: Different Gene Signatures in M1(LPS+) vs. Classically and M2(LPS–) vs. Alternatively Activated Macrophages. Front. Immunol. 2019;10:1084. doi: 10.3389/fimmu.2019.01084.
    1. Lambert C., Preijers F.W.M.B., Yanikkaya Demirel G., Sack U. Monocytes and macrophages in flow: An ESCCA initiative on advanced analyses of monocyte lineage using flow cytometry. Cytom. Part B Clin. Cytom. 2017;92:180–188. doi: 10.1002/cyto.b.21280.
    1. Ventola C.L. The antibiotic resistance crisis: Part 1: Causes and threats. Pharm. Ther. 2015;40:277–283.
    1. Shaddox L.M., Walker C.B. Treating chronic periodontitis: Current status, challenges, and future directions. Clin. Cosmet. Investig. Dent. 2010;2:79–91. doi: 10.2147/CCIDE.S7712.
    1. Seymour R.A. Effects of medications on the periodontal tissues in health and disease. Periodontol. 2000. 2006;40:120–129. doi: 10.1111/j.1600-0757.2005.00137.x.
    1. Irie K., Novince C.M., Darveau R.P. Impact of the Oral Commensal Flora on Alveolar Bone Homeostasis. J. Dent. Res. 2014;93:801–806. doi: 10.1177/0022034514540173.
    1. Patini R., Cattani P., Marchetti S., Isola G., Quaranta G., Gallenzi P. Evaluation of Predation Capability of Periodontopathogens Bacteria by Bdellovibrio Bacteriovorus HD100. An in Vitro Study. Materials. 2019;12:2008. doi: 10.3390/ma12122008.
    1. Moyo M., Van Staden J. Medicinal properties and conservation of Pelargonium sidoides DC. J. Ethnopharmacol. 2014;152:243–255. doi: 10.1016/j.jep.2014.01.009.
    1. Kolodziej H., Kayser O., Radtke O.A., Kiderlen A.F., Koch E. Pharmacological profile of extracts of Pelargonium sidoides and their constituents. Phytomedicine. 2003;10:18–24. doi: 10.1078/1433-187X-00307.
    1. Benso B. Virulence factors associated with Aggregatibacter actinomycetemcomitans and their role in promoting periodontal diseases. Virulence. 2017;8:111–114. doi: 10.1080/21505594.2016.1235128.
    1. Lacombe A., Wu V.C.H. The potential of berries to serve as selective inhibitors of pathogens and promoters of beneficial microorganisms. Food Qual. Saf. 2017;1:3–12. doi: 10.1093/fqs/fyx001.
    1. Thapa D., Losa R., Zweifel B., Wallace R.J. Sensitivity of pathogenic and commensal bacteria from the human colon to essential oils. Microbiology. 2012;158:2870–2877. doi: 10.1099/mic.0.061127-0.
    1. Maisuria V.B., Los Santos Y.L., Tufenkji N., Déziel E. Cranberry-derived proanthocyanidins impair virulence and inhibit quorum sensing of Pseudomonas aeruginosa. Sci. Rep. 2016;6:30169. doi: 10.1038/srep30169.
    1. Krachler A.M., Orth K. Targeting the bacteria-host interface: Strategies in anti-adhesion therapy. Virulence. 2013;4:284–294. doi: 10.4161/viru.24606.
    1. Di Pasqua R., Betts G., Hoskins N., Edwards M., Ercolini D., Mauriello G. Membrane Toxicity of Antimicrobial Compounds from Essential Oils. J. Agric. Food Chem. 2007;55:4863–4870. doi: 10.1021/jf0636465.
    1. Maisuria V.B., Okshevsky M., Déziel E., Tufenkji N. Proanthocyanidin Interferes with Intrinsic Antibiotic Resistance Mechanisms of Gram-Negative Bacteria. Adv. Sci. 2019;6:1802333. doi: 10.1002/advs.201802333.
    1. Trentin D.S., Silva D.B., Frasson A.P., Rzhepishevska O., da Silva M.V., Pulcini E.D.L., James G., Soares G.V., Tasca T., Ramstedt M., et al. Natural Green coating inhibits adhesion of clinically important bacteria. Sci. Rep. 2015;5:8287. doi: 10.1038/srep08287.
    1. Ma J., Gao S.S., Yang H.J., Wang M., Cheng B.F., Feng Z.W., Wang L. Neuroprotective Effects of Proanthocyanidins, Natural Flavonoids Derived From Plants, on Rotenone-Induced Oxidative Stress and Apoptotic Cell Death in Human Neuroblastoma SH-SY5Y Cells. Front. Neurosci. 2018;12:369. doi: 10.3389/fnins.2018.00369.
    1. Zhang C., Chen W., Zhang X., Zheng Y., Yu F., Liu Y., Wang Y. Grape seed proanthocyanidins induce mitochondrial pathway-mediated apoptosis in human colorectal carcinoma cells. Oncol. Lett. 2017;14:5853–5860. doi: 10.3892/ol.2017.6992.
    1. Ji B.C., Hsu W.H., Yang J.S., Hsia T.C., Lu C.C., Chiang J.H., Yang J.L., Lin C.H., Lin J.J., Suen L.J.W., et al. Gallic Acid Induces Apoptosis via Caspase-3 and Mitochondrion-Dependent Pathways in Vitro and Suppresses Lung Xenograft Tumor Growth in Vivo. J. Agric. Food Chem. 2009;57:7596–7604. doi: 10.1021/jf901308p.
    1. Hikiji H., Takato T., Shimizu T., Ishii S. The roles of prostanoids, leukotrienes, and platelet-activating factor in bone metabolism and disease. Prog. Lipid Res. 2008;47:107–126. doi: 10.1016/j.plipres.2007.12.003.
    1. Noguchi K., Ishikawa I. The roles of cyclooxygenase-2 and prostaglandin E2 in periodontal disease. Periodontol. 2000. 2007;43:85–101. doi: 10.1111/j.1600-0757.2006.00170.x.
    1. Kaneko H., Mehrotra M., Alander C., Lerner U., Pilbeam C., Raisz L. Effects of prostaglandin E2 and lipopolysaccharide on osteoclastogenesis in RAW 264.7 cells. Prostaglandins Leukot. Essent. Fat. Acids. 2007;77:181–186. doi: 10.1016/j.plefa.2007.09.002.
    1. Hienz S.A., Paliwal S., Ivanovski S. Mechanisms of Bone Resorption in Periodontitis. J. Immunol. Res. 2015;2015:615486. doi: 10.1155/2015/615486.
    1. Ghosh A., Park J.Y., Fenno C., Kapila Y.L. Porphyromonas gingivalis, gamma interferon, and a proapoptotic fibronectin matrix form a synergistic trio that induces c-Jun N-terminal kinase 1-mediated nitric oxide generation and cell death. Infect. Immun. 2008;76:5514–5523. doi: 10.1128/IAI.00625-08.
    1. Park S.M., Min B.G., Jung J.Y., Jegal K.H., Lee C.W., Kim K.Y., Kim Y.W., Choi Y.W., Cho I.J., Ku S.K., et al. Combination of Pelargonium sidoides and Coptis chinensis root inhibits nuclear factor kappa B-mediated inflammatory response in vitro and in vivo. BMC Complement. Altern. Med. 2018;18 doi: 10.1186/s12906-018-2088-x.
    1. Dinarello C.A. Proinflammatory Cytokines. Chest. 2000;118:503–508. doi: 10.1378/chest.118.2.503.
    1. Garlet G.P., Cardoso C.R.B., Campanelli A.P., Ferreira B.R., Avila-Campos M.J., Cunha F.Q., Silva J.S. The dual role of p55 tumour necrosis factor-alpha receptor in Actinobacillus actinomycetemcomitans-induced experimental periodontitis: Host protection and tissue destruction. Clin. Exp. Immunol. 2007;147:128–138. doi: 10.1111/j.1365-2249.2006.03260.x.
    1. Graves D.T., Cochran D. The Contribution of Interleukin-1 and Tumor Necrosis Factor to Periodontal Tissue Destruction. J. Periodontol. 2003;74:391–401. doi: 10.1902/jop.2003.74.3.391.
    1. Yucel-Lindberg T., Båge T. Inflammatory mediators in the pathogenesis of periodontitis. Expert Rev. Mol. Med. 2013;15:e7. doi: 10.1017/erm.2013.8.
    1. Ambriz-Ambriz-Pérez D.L., Leyva-Lopez N., Gutierrez-Grijalva E.P., Heredia J.B. Phenolic compounds: Natural alternative in inflammation treatment. A Review. Cogent Food Agric. 2016;2 doi: 10.1080/23311932.2015.1131412.

Source: PubMed

3
订阅