A Review of Management of Inflammation in the HIV Population

Jihad Slim, Christopher F Saling, Jihad Slim, Christopher F Saling

Abstract

Advancements in antiretroviral therapy have drastically increased the life expectancy for those infected with HIV. Today, a new subgroup of older patients with long-term controlled HIV exists, and its populace is continuously mounting. Therefore, it is essential to understand the enduring effects of chronic suppressed HIV infection in order to further improve HIV management in these patients. This paper will examine the role of HIV in chronic inflammation and immune dysfunction, the dynamic interaction that exists between comorbidity and HIV, and the potential consequences of long-term antiretroviral therapy in an effort to provide the best management options for the virally suppressed HIV patient.

Figures

Figure 1
Figure 1
Microbial translocation, low-grade viremia, coinfection, and adverse events from cART all contribute towards chronic inflammation and T-cell activation. This immune dysfunction augments the severity of traditional comorbid conditions. Furthermore, the comorbidities themselves intensify all of the aforementioned factors causing a positive feedback cycle.

References

    1. Centers for Disease Control and Prevention Morbidity and Mortality Weekly Report. HIV and AIDS—United States, 1981–2000. .
    1. Samji H., Cescon A., Hogg R. S., et al. Closing the gap: increases in life expectancy among treated HIV-positive individuals in the United States and Canada. PLoS ONE. 2013;8(12) doi: 10.1371/journal.pone.0081355.e81355
    1. Hunt P. W., Martin J. N., Sinclair E., et al. T cell activation is associated with lower CD4+ T cell gains in human immunodeficiency virus-infected patients with sustained viral suppression during antiretroviral therapy. The Journal of Infectious Diseases. 2003;187(10):1534–1543. doi: 10.1086/374786.
    1. Wada N. I., Jacobson L. P., Margolick J. B., et al. The effect of HAART-induced HIV suppression on circulating markers of inflammation and immune activation. AIDS. 2015;29(4):463–471. doi: 10.1097/QAD.0000000000000545.
    1. Tincati C., Merlini E., Braidotti P., et al. Impaired gut junctional complexes feature late-treated individuals with suboptimal CD4+ T-cell recovery upon virologically suppressive combination antiretroviral therapy. AIDS. 2016;30(7):991–1003. doi: 10.1097/qad.0000000000001015.
    1. Zaegel-Faucher O., Bregigeon S., Cano C. E., et al. Impact of hepatitis C virus coinfection on T-cell dynamics in long-term HIV-suppressors under combined antiretroviral therapy. AIDS. 2015;29(12):1505–1510. doi: 10.1097/qad.0000000000000650.
    1. Marchetti G., Tincati C., Silvestri G. Microbial translocation in the pathogenesis of HIV infection and AIDS. Clinical Microbiology Reviews. 2013;26(1):2–18. doi: 10.1128/CMR.00050-12.
    1. Stacey A. R., Norris P. J., Qin L., et al. Induction of a striking systemic cytokine cascade prior to peak viremia in acute human immunodeficiency virus type 1 infection, in contrast to more modest and delayed responses in acute hepatitis B and C virus infections. Journal of Virology. 2009;83(8):3719–3733. doi: 10.1128/JVI.01844-08.
    1. Brenchley J. M., Douek D. C. HIV infection and the gastrointestinal immune system. Mucosal Immunology. 2008;1(1):23–30. doi: 10.1038/mi.2007.1.
    1. Ciccone E. J., Read S. W., Mannon P. J., et al. Cycling of gut mucosal CD4+ T cells decreases after prolonged anti-retroviral therapy and is associated with plasma LPS levels. Mucosal Immunology. 2010;3(2):172–181. doi: 10.1038/mi.2009.129.
    1. Klatt N. R., Funderburg N. T., Brenchley J. M. Microbial translocation, immune activation, and HIV disease. Trends in Microbiology. 2013;21(1):6–13. doi: 10.1016/j.tim.2012.09.001.
    1. Sandler N. G., Wand H., Roque A., et al. Plasma levels of soluble CD14 independently predict mortality in HIV infection. Journal of Infectious Diseases. 2011;203(6):780–790. doi: 10.1093/infdis/jiq118.
    1. Hunt P. W., Sinclair E., Rodriguez B., et al. Gut epithelial barrier dysfunction and innate immune activation predict mortality in treated HIV infection. The Journal of Infectious Diseases. 2014;210(8):1228–1238. doi: 10.1093/infdis/jiu238.
    1. Lederman M. M., Funderburg N. T., Sekaly R. P., Klatt N. R., Hunt P. W. Residual immune dysregulation syndrome in treated HIV infection. Advances in Immunology. 2013;119:51–83. doi: 10.1016/b978-0-12-407707-2.00002-3.
    1. Hunt P. W., Martin J. N., Sinclair E., et al. T cell activation is associated with lower CD4+ T cell gains in human immunodeficiency vires-infected patients with sustained viral suppression during antiretroviral therapy. Journal of Infectious Diseases. 2003;187(10):1534–1543. doi: 10.1086/374786.
    1. Masiá M., Robledano C., de la Tabla V. O., et al. Coinfection with human herpesvirus 8 is associated with persistent inflammation and immune activation in virologically suppressed HIV-infected patients. PLoS ONE. 2014;9(8) doi: 10.1371/journal.pone.0105442.e105442
    1. Modjarrad K., Vermund S. H. Effect of treating co-infections on HIV-1 viral load: a systematic review. The Lancet Infectious Diseases. 2010;10(7):455–463. doi: 10.1016/s1473-3099(10)70093-1.
    1. Deayton J. R., Sabin C. A., Johnson M. A., Emery V. C., Wilson P., Griffiths P. D. Importance of cytomegalovirus viraemia in risk of disease progression and death in HIV-infected patients receiving highly active antiretroviral therapy. The Lancet. 2004;363(9427):2116–2121. doi: 10.1016/s0140-6736(04)16500-8.
    1. Barrett L., Fowke K. R., Grant M. D. Cytomegalovirus, aging, and HIV: a perfect storm. AIDS Reviews. 2012;14(3):159–167.
    1. Kuller L. H., Tracy R., Belloso W., et al. Inflammatory and coagulation bio-markers and mortality in patients with HIV infection. PLoS Medicine. 2008;5(10, article e203) doi: 10.1371/journal.pmed.0050203.
    1. Duprez D. A., Neuhaus J., Kuller L. H., et al. Inflammation, coagulation and cardiovascular disease in HIV-infected individuals. PLoS ONE. 2012;7(9) doi: 10.1371/journal.pone.0044454.e44454
    1. Tenorio A. R., Zheng Y., Bosch R. J., et al. Soluble markers of inflammation and coagulation but not T-cell activation predict non-AIDS-defining morbid events during suppressive antiretroviral treatment. Journal of Infectious Diseases. 2014;210(8):1248–1259. doi: 10.1093/infdis/jiu254.
    1. Ryom L., Weber R., Morlat P., et al. Trends in underlying causes of death in people with HIV from 1999 to 2011 (D:A:D): a multicohort collaboration. The Lancet. 1999;384(9939):241–248. doi: 10.1016/S0140-6736(14)60604-8.
    1. Morlat P., Roussillon C., Henard S., et al. Causes of death among HIV-infected patients in France in 2010 (national survey): trends since 2000. AIDS. 2014;28(8):1181–1191. doi: 10.1097/qad.0000000000000222.
    1. Hasse B., Ledergerber B., Furrer H., et al. Morbidity and aging in HIV-infected persons: the swiss HIV cohort study. Clinical Infectious Diseases. 2011;53(11):1130–1139. doi: 10.1093/cid/cir626.
    1. Guaraldi G., Orlando G., Zona S., et al. Premature age-related comorbidities among HIV-infected persons compared with the general population. Clinical Infectious Diseases. 2011;53(11):1120–1126. doi: 10.1093/cid/cir627.
    1. Freiberg M. S., Chang C. C., Kuller L. H., et al. HIV infection and the risk of acute myocardial infarction. JAMA Internal Medicine. 2013;173(8):614–622. doi: 10.1001/jamainternmed.2013.3728.
    1. Triant V. A., Lee H., Hadigan C., Grinspoon S. K. Increased acute myocardial infarction rates and cardiovascular risk factors among patients with human immunodeficiency virus disease. Journal of Clinical Endocrinology and Metabolism. 2007;92(7):2506–2512. doi: 10.1210/jc.2006-2190.
    1. Okeke N. L., Hicks C. B., McKellar M. S., Fowler V. G., Jr., Federspiel J. J. History of AIDS in HIV-infected patients is associated with higher in-hospital mortality following admission for acute myocardial infarction and stroke. Journal of Infectious Diseases. 2016;213(12):1955–1961. doi: 10.1093/infdis/jiw082.
    1. Shiels M. S., Pfeiffer R. M., Gail M. H., et al. Cancer burden in the HIV-infected population in the United States. JNCI Journal of the National Cancer Institute. 2011;103(9):753–762. doi: 10.1093/jnci/djr076.
    1. Rodger A. J., Lodwick R., Schechter M., et al. Mortality in well controlled HIV in the continuous antiretroviral therapy arms of the SMART and ESPRIT trials compared with the general population. AIDS. 2013;27(6):973–979. doi: 10.1097/qad.0b013e32835cae9c.
    1. Dubrow R., Silverberg M. J., Park L. S., Crothers K., Justice A. C. HIV infection, aging, and immune function: implications for cancer risk and prevention. Current Opinion in Oncology. 2012;24(5):506–516. doi: 10.1097/cco.0b013e328355e131.
    1. Tyerman Z., Aboulafia D. M. Review of screening guidelines for non-AIDS-defining malignancies: evoking issues in the era of highly active antiretroviral therapy. AIDS Reviews. 2012;14(1):3–16.
    1. Powles T., Robinson D., Stebbing J., et al. Highly active antiretroviral therapy and the incidence of non-AIDS-defining cancers in people with HIV infection. Journal of Clinical Oncology. 2009;27(6):884–890. doi: 10.1200/jco.2008.19.6626.
    1. Shepherd L., Borges Á., Ledergerber B., et al. Infection-related and -unrelated malignancies, HIV and the aging population. HIV Medications. 2016;17(8):590–600. doi: 10.1111/hiv.12359.
    1. Riedel D. J., Tang L. S., Rositch A. F. The role of viral co-infection in HIV-associated non-AIDS-related cancers. Current HIV/AIDS Reports. 2015;12(3):362–372. doi: 10.1007/s11904-015-0276-6.
    1. Carbone A., Gloghini A., Dotti G. EBV-associated lymphoproliferative disorders: classification and treatment. Oncologist. 2008;13(5):577–585. doi: 10.1634/theoncologist.2008-0036.
    1. Piketty C., Selinger-Leneman H., Bouvier A.-M., et al. Incidence of HIV-related anal cancer remains increased despite long-term combined antiretroviral treatment: results from the french hospital database on HIV. Journal of Clinical Oncology. 2012;30(35):4360–4366. doi: 10.1200/jco.2012.44.5486.
    1. Hasse B., Ledergerber B., Furrer H., et al. Morbidity and aging in HIV-infected persons: the Swiss HIV cohort study. Clinical Infectious Diseases. 2011;53(11):1130–1139. doi: 10.1093/cid/cir626.
    1. Gutierrez A. D., Balasubramanyam A. Dysregulation of glucose metabolism in HIV patients: epidemiology, mechanisms, and management. Endocrine. 2012;41(1):1–10. doi: 10.1007/s12020-011-9565-z.
    1. Giralt M., Domingo P., Villarroya F. Adipose tissue biology and HIV-infection. Best Practice & Research Clinical Endocrinology & Metabolism. 2011;25(3):487–499. doi: 10.1016/j.beem.2010.12.001.
    1. Towner W. J., Xu L., Leyden W. A., et al. The effect of HIV infection, immunodeficiency, and antiretroviral therapy on the risk of hepatic dysfunction. Journal of Acquired Immune Deficiency Syndromes. 2012;60(3):321–327. doi: 10.1097/qai.0b013e31824e9ef2.
    1. Marchetti G., Cozzi-Lepri A., Tincati C., et al. Immune activation and microbial translocation in liver disease progression in HIV/hepatitis co-infected patients: results from the Icona Foundation study. BMC Infectious Diseases. 2014;14, article 79 doi: 10.1186/1471-2334-14-79.
    1. Anderson J. P., Horsburgh C. R., Jr., Williams P. L., et al. CD4 recovery on antiretroviral therapy is associated with decreased progression to liver disease among hepatitis C virus-infected injecting drug users. Open Forum Infectious Diseases. 2015;2(1):p. ofv019. doi: 10.1093/ofid/ofv019.
    1. Kelley C. F., Kitchen C. M. R., Hunt P. W., et al. Incomplete peripheral CD4+ cell count restoration in HIV-infected patients receiving long-term antiretroviral treatment. Clinical Infectious Diseases. 2009;48(6):787–794. doi: 10.1086/597093.
    1. Panel on Antiretroviral Guidelines for Adults and Adolescents. Guidelines for the use of antiretroviral agents in HIV-1-infected adults and adolescents. Department of Health and Human Services, .
    1. Sabin C. A., Smith C. J., d'Arminio Monforte A., et al. Response to combination antiretroviral therapy: variation by age. AIDS. 2008;22(12):1463–1473. doi: 10.1097/qad.0b013e3282f88d02.
    1. Althoff K. N., Justice A. C., Gange S. J., et al. Virologic and immunologic response to HAART, by age and regimen class. AIDS. 2010;24(16):2469–2479. doi: 10.1097/QAD.0b013e32833e6d14.
    1. Lundgren J. D., Babiker A. G., Gordin F., et al. Initiation of antiretroviral therapy in early asymptomatic HIV infection. The New England Journal of Medicine. 2015;373(9):795–807. doi: 10.1056/nejmoa1506816.
    1. TEMPRANO ANRS Study Group, Danel C., Moh R., et al. A trial of early antiretrovirals and isoniazid preventive therapy in Africa. The New England Journal of Medicine. 2015;373(9):808–822. doi: 10.1056/nejmoa1507198.
    1. Deeks S. G. HIV infection, inflammation, immunosenescence, and aging. Annual Review of Medicine. 2011;62(1):141–155. doi: 10.1146/annurev-med-042909-093756.
    1. Friis-Møller N., Weber R., Reiss P., et al. Cardiovascular disease risk factors in HIV patients—association with antiretroviral therapy. Results from the DAD study. AIDS. 2003;17(8):1179–1193. doi: 10.1097/00002030-200305230-00010.
    1. Worm S. W., Sabin C., Weber R., et al. Risk of myocardial infarction in patients with HIV infection exposed to specific individual antiretroviral drugs from the 3 major drug classes: the data collection on adverse events of anti-HIV drugs (D:A:D) Study. Journal of Infectious Diseases. 2010;201(3):318–330. doi: 10.1086/649897.
    1. Lang S., Mary-Krause M., Cotte L., et al. Impact of individual antiretroviral drugs on the risk of myocardial infarction in human immunodeficiency virus-infected patients: A case-control study nested within the French hospital database on HIV ANRS cohort CO4 . Archives of Internal Medicine. 2010;170(14):1228–1238. doi: 10.1001/archinternmed.2010.197.
    1. Durand M., Sheehy O., Baril J.-G., Lelorier J., Tremblay C. L. Association between HIV infection, antiretroviral therapy, and risk of acute myocardial infarction: a cohort and nested case-control study using Québec's Public Health Insurance database. Journal of Acquired Immune Deficiency Syndromes. 2011;57(3):245–253. doi: 10.1097/qai.0b013e31821d33a5.
    1. Marcus J. L., Neugebauer R. S., Leyden W. A., et al. Use of abacavir and risk of cardiovascular disease among HIV-infected individuals. Journal of Acquired Immune Deficiency Syndromes. 2016;71(4):413–419. doi: 10.1097/QAI.0000000000000881.
    1. The SMART/INSIGHT and the D:A:D Study Groups; TSI at DADSG. Use of nucleoside reverse transcriptase inhibitors and risk of myocardial infarction in HIV-infected patients. AIDS. 2008;22(14):F17–F24. doi: 10.1097/qad.0b013e32830fe35e.
    1. Obel N., Farkas D. K., Kronborg G., et al. Abacavir and risk of myocardial infarction in HIV-infected patients on highly active antiretroviral therapy: a population-based nationwide cohort study. HIV Medicine. 2010;11(2):130–136. doi: 10.1111/j.1468-1293.2009.00751.x.
    1. Choi A. I., Vittinghoff E., Deeks S. G., Weekley C. C., Li Y., Shlipak M. G. Cardiovascular risks associated with abacavir and tenofovir exposure in HIV-infected persons. AIDS. 2011;25(10):1289–1298. doi: 10.1097/QAD.0b013e328347fa16.
    1. Costagliola D., Lang S., Mary-Krause M., Boccara F. Abacavir and cardiovascular risk: reviewing the evidence. Current HIV/AIDS Reports. 2010;7(3):127–133. doi: 10.1007/s11904-010-0047-3.
    1. Brothers C. H., Hernandez J. E., Cutrell A. G., et al. Risk of myocardial infarction and abacavir therapy: no increased risk across 52 glaxosmithkline-sponsored clinical trials in adult subjects. Journal of Acquired Immune Deficiency Syndromes. 2009;51(1):20–28. doi: 10.1097/qai.0b013e31819ff0e6.
    1. Bedimo R. J., Westfall A. O., Drechsler H., Vidiella G., Tebas P. Abacavir use and risk of acute myocardial infarction and cerebrovascular events in the highly active antiretroviral therapy era. Clinical Infectious Diseases. 2011;53(1):84–91. doi: 10.1093/cid/cir269.
    1. Ribaudo H. J., Benson C. A., Zheng Y., et al. No risk of myocardial infarction associated with initial antiretroviral treatment containing abacavir: short and long-term results from ACTG A5001/ALLRT. Clinical Infectious Diseases. 2011;52(7):929–940. doi: 10.1093/cid/ciq244.
    1. Ding X., Andraca-Carrera E., Cooper C., et al. No association of abacavir use with myocardial infarction: findings of an FDA meta-analysis. Journal of Acquired Immune Deficiency Syndromes. 2012;61(4):441–447. doi: 10.1097/qai.0b013e31826f993c.
    1. Ryom L., Lundgren J. D., De Wit S., et al. Use of antiretroviral therapy and risk of end-stage liver disease and hepatocellular carcinoma in HIV-positive persons. AIDS. 2016;30(11):1731–1743. doi: 10.1097/qad.0000000000001018.
    1. De Wit S., Sabin C., Weber R., et al. Incidence and risk factors for new-onset diabetes in HIV-infected patients: the Data Collection on Adverse Events of Anti-HIV Drugs (D:A:D) study. Diabetes Care. 2008;31(6):1224–1229. doi: 10.2337/dc07-2013.
    1. Gutiérrez F., Masiá M. The role of HIV and antiretroviral therapy in bone disease. AIDS Reviews. 2011;13(2):109–118.
    1. Brown T. T., Qaqish R. B. Antiretroviral therapy and the prevalence of osteopenia and osteoporosis: a meta-analytic review. AIDS. 2006;20(17):2165–2174. doi: 10.1097/qad.0b013e32801022eb.
    1. Perrot S., Aslangul E., Szwebel T., Caillat-Vigneron N., Le Jeunne C. Bone pain due to fractures revealing osteomalacia related to tenofovir-induced proximal renal tubular dysfunction in a human immunodeficiency virus-infected patient. Journal of Clinical Rheumatology. 2009;15(2):72–74. doi: 10.1097/RHU.0b013e31819c20d8.
    1. Herlitz L. C., Mohan S., Stokes M. B., Radhakrishnan J., D'Agati V. D., Markowitz G. S. Tenofovir nephrotoxicity: acute tubular necrosis with distinctive clinical, pathological, and mitochondrial abnormalities. Kidney International. 2010;78(11):1171–1177. doi: 10.1038/ki.2010.318.
    1. Sax P. E., Wohl D., Yin M. T., et al. Tenofovir alafenamide versus tenofovir disoproxil fumarate, coformulated with elvitegravir, cobicistat, and emtricitabine, for initial treatment of HIV-1 infection: two randomised, double-blind, phase 3, non-inferiority trials. The Lancet. 2015;385(9987):2606–2615. doi: 10.1016/s0140-6736(15)60616-x.
    1. Leeansyah E., Cameron P. U., Solomon A., et al. Inhibition of telomerase activity by HIV nucleos(t)ide reverse transcriptase inhibitors: a potential factor contributing to HIV-associated accelerated aging. Journal of Infectious Diseases. 2013;207(7):1157–1165. doi: 10.1093/infdis/jit006.
    1. Liu J. C. Y., Leung J. M., Ngan D. A., et al. Absolute leukocyte telomere length in HIV-infected and uninfected individuals: evidence of accelerated cell senescence in HIV-associated chronic obstructive pulmonary disease. PLoS ONE. 2015;10(4) doi: 10.1371/journal.pone.0124426.e0124426
    1. Zanet D. A. L., Thorne A., Singer J., et al. Association between short leukocyte telomere length and HIV infection in a cohort study: no evidence of a relationship with antiretroviral therapy. Clinical Infectious Diseases. 2014;58(9):1322–1332. doi: 10.1093/cid/ciu051.
    1. Anderson A., Ludicello J., Kallianpur A., et al. CNS drug distrubtion and CSF inflammation during supressive antriretroviral therapy. Proceedings of the Conference of Retroviruses and Opportunistic Infections (CROI '16); February 2016; Boston, Mass, USA.
    1. Chege D., Kovacs C., la Porte C., et al. Effect of raltegravir intensification on HIV proviral DNA in the blood and gut mucosa of men on long-term therapy: a randomized controlled trial. AIDS. 2012;26(2):167–174. doi: 10.1097/qad.0b013e32834e8955.
    1. Yukl S. A., Shergill A. K., McQuaid K., et al. Effect of raltegravir-containing intensification on HIV burden and T-cell activation in multiple gut sites of HIV-positive adults on suppressive antiretroviral therapy. AIDS. 2010;24(16):2451–2460. doi: 10.1097/qad.0b013e32833ef7bb.
    1. Patterson K. B., Prince H. A., Stevens T., et al. Differential penetration of raltegravir throughout gastrointestinal tissue: implications for eradication and cure. AIDS. 2013;27(9):1413–1419. doi: 10.1097/qad.0b013e32835f2b49.
    1. Gandhi R. T., Zheng L., Bosch R. J., et al. The Effect of Raltegravir Intensification on Low-level Residual Viremia in HIV-Infected Patients on Antiretroviral Therapy: A Randomized Controlled Trial. PLoS Medicine. 2010;7(8):p. e1000321. doi: 10.1371/journal.pmed.1000321.
    1. Hatano H., Strain M. C., Scherzer R., et al. Increase in 2-long terminal repeat circles and decrease in D-dimer after raltegravir intensification in patients with treated HIV infection: a randomized, placebo-controlled trial. Journal of Infectious Diseases. 2013;208(9):1436–1442. doi: 10.1093/infdis/jit453.
    1. Hatano H., Hayes T. L., Dahl V., et al. A randomized, controlled trial of raltegravir intensification in antiretroviral-treated, HIV-infected patients with a suboptimal CD4+ T cell response. The Journal of Infectious Diseases. 2011;203(7):960–968. doi: 10.1093/infdis/jiq138.
    1. Martínez E., D’Albuquerque P. M., Llibre J. M., et al. Changes in cardiovascular biomarkers in HIV-infected patients switching from ritonavir-boosted protease inhibitors to raltegravir. AIDS. 2012;26(18):2315–2326. doi: 10.1097/QAD.0b013e328359f29c.
    1. Silva E. F., Charreau I., Gourmel B., et al. Decreases in inflammatory and coagulation biomarkers levels in HIV-infected patients switching from enfuvirtide to raltegravir: ANRS 138 substudy. Journal of Infectious Diseases. 2013;208(6):892–897. doi: 10.1093/infdis/jit280.
    1. Lake J. E., McComsey G. A., Hulgan T., et al. Switch to raltegravir decreases soluble CD14 in virologically suppressed overweight women: the Women, Integrase and Fat Accumulation Trial. HIV Medicine. 2014;15(7):431–441. doi: 10.1111/hiv.12128.
    1. Gupta S. K., Mi D., Moe S. M., Dubé M. P., Liu Z. Effects of switching from efavirenz to raltegravir on endothelial function, bone mineral metabolism, inflammation, and renal function: a randomized, controlled trial. Journal of Acquired Immune Deficiency Syndromes. 2013;64(3):279–283. doi: 10.1097/qai.0b013e3182a97c39.
    1. Cuzin L., Trabelsi S., Delobel P., et al. Maraviroc intensification of stable antiviral therapy in HIV-1-infected patients with poor immune restoration: MARIMUNO-ANRS 145 study. Journal of Acquired Immune Deficiency Syndromes. 2012;61(5):557–564. doi: 10.1097/QAI.0b013e318273015f.
    1. Hunt P. W., Shulman N. S., Hayes T. L., et al. The immunologic effects of maraviroc intensification in treated HIV-infected individuals with incomplete CD41 T-cell recovery: A randomized trial. Blood. 2013;121(23, article no. 4635) doi: 10.1182/blood-2012-06-436345.
    1. Belaunzarán-Zamudio P., Azzoni L., Sierra-Madero J., et al. Maraviroc and immune recovery in advanced AIDS. Proceedings of the Conference of Retroviruses and Opportunistic Infections (CROI '16); February 2016; Boston, Mass, USA.
    1. Hileman C. O., Kinley B., Scharen-Guivel V., et al. Differential reduction in monocyte activation and vascular inflammation with integrase inhibitor-based initial antiretroviral therapy among HIV-infected individuals. Journal of Infectious Diseases. 2015;212(3):345–354. doi: 10.1093/infdis/jiv004.
    1. Chan E., Mirmonsef P., Brown T., et al. Immunologic effects of Maraviroc vs Tenofovir and association with bone loss. Proceedings of the Conference of Retroviruses and Opportunistic Infections (CROI '16); February 2016; Boston, Mass, USA.
    1. Papakonstantinou V. D., Chini M., Mangafas N., et al. In vivo effect of two first-line ART regimens on inflammatory mediators in male HIV patients. Lipids in Health and Disease. 2014;13, article 90 doi: 10.1186/1476-511x-13-90.
    1. Barrios A., Rendón A., Negredo E., et al. Paradoxical CD4+ T-cell decline in HIV-infected patients with complete virus suppression taking tenofovir and didanosine. AIDS. 2005;19(6):569–575. doi: 10.1097/01.aids.0000163933.14649.93.
    1. Calza L., Vanino E., Salvadori C., et al. Tenofovir/emtricitabine/efavirenz plus rosuvastatin decrease serum levels of inflammatory markers more than antiretroviral drugs alone in antiretroviral therapy-naive hiv-infected patients. HIV Clinical Trials. 2014;15(1):1–13. doi: 10.1310/hct1501-1.
    1. Eckard A. R., Jiang Y., Debanne S. M., Funderburg N. T., Mccomsey G. A. Effect of 24 weeks of statin therapy on systemic and vascular inflammation in HIV-infected subjects receiving antiretroviral therapy. Journal of Infectious Diseases. 2014;209(8):1156–1164. doi: 10.1093/infdis/jiu012.
    1. Funderburg N. T., Jiang Y., Debanne S. M., et al. Rosuvastatin treatment reduces markers of monocyte activation in HIV-infected subjects on antiretroviral therapy. Clinical Infectious Diseases. 2014;58(4):588–595. doi: 10.1093/cid/cit748.
    1. Wooten J. S., Nambi P., Gillard B. K., et al. Intensive lifestyle modification reduces Lp-PLA2 in dyslipidemic HIV/HAART patients. Medicine & Science in Sports & Exercise. 2013;45(6):1043–1050. doi: 10.1249/MSS.0b013e3182843961.
    1. Valiathan R., Miguez M. J., Patel B., Arheart K. L., Asthana D. Tobacco smoking increases immune activation and impairs T-cell function in HIV infected patients on antiretrovirals: a cross-sectional pilot study. PLoS ONE. 2014;9(5) doi: 10.1371/journal.pone.0097698.e97698
    1. Villar-García J., Hernández J. J., Güerri-Fernández R., et al. Effect of probiotics (Saccharomyces boulardii) on microbial translocation and inflammation in HIV-treated patients: a double-blind, randomized, placebo-controlled trial. JAIDS Journal of Acquired Immune Deficiency Syndromes. 2015;68(3):256–263. doi: 10.1097/qai.0000000000000468.
    1. Sereti I., Estes J. D., Thompson W. L., et al. Decreases in colonic and systemic inflammation in chronic HIV infection after IL-7 administration. PLoS Pathogens. 2014;10(1) doi: 10.1371/journal.ppat.1003890.e1003890

Source: PubMed

3
订阅