Using mixed methods to evaluate efficacy and user expectations of a virtual reality-based training system for upper-limb recovery in patients after stroke: a study protocol for a randomised controlled trial

Corina Schuster-Amft, Kynan Eng, Isabelle Lehmann, Ludwig Schmid, Nagisa Kobashi, Irène Thaler, Martin L Verra, Andrea Henneke, Sandra Signer, Michael McCaskey, Daniel Kiper, Corina Schuster-Amft, Kynan Eng, Isabelle Lehmann, Ludwig Schmid, Nagisa Kobashi, Irène Thaler, Martin L Verra, Andrea Henneke, Sandra Signer, Michael McCaskey, Daniel Kiper

Abstract

Background: In recent years, virtual reality has been introduced to neurorehabilitation, in particular with the intention of improving upper-limb training options and facilitating motor function recovery.

Methods/design: The proposed study incorporates a quantitative part and a qualitative part, termed a mixed-methods approach: (1) a quantitative investigation of the efficacy of virtual reality training compared to conventional therapy in upper-limb motor function are investigated, (2a) a qualitative investigation of patients' experiences and expectations of virtual reality training and (2b) a qualitative investigation of therapists' experiences using the virtual reality training system in the therapy setting. At three participating clinics, 60 patients at least 6 months after stroke onset will be randomly allocated to an experimental virtual reality group (EG) or to a control group that will receive conventional physiotherapy or occupational therapy (16 sessions, 45 minutes each, over the course of 4 weeks). Using custom data gloves, patients' finger and arm movements will be displayed in real time on a monitor, and they will move and manipulate objects in various virtual environments. A blinded assessor will test patients' motor and cognitive performance twice before, once during, and twice after the 4-week intervention. The primary outcome measure is the Box and Block Test. Secondary outcome measures are the Chedoke-McMaster Stroke Assessments (hand, arm and shoulder pain subscales), the Chedoke-McMaster Arm and Hand Activity Inventory, the Line Bisection Test, the Stroke Impact Scale, the MiniMentalState Examination and the Extended Barthel Index. Semistructured face-to-face interviews will be conducted with patients in the EG after intervention finalization with a focus on the patients' expectations and experiences regarding the virtual reality training. Therapists' perspectives on virtual reality training will be reviewed in three focus groups comprising four to six occupational therapists and physiotherapists.

Discussion: The interviews will help to gain a deeper understanding of the phenomena under investigation to provide sound recommendations for the implementation of the virtual reality training system for routine use in neurorehabilitation complementing the quantitative clinical assessments.

Trial registration: Cliniclatrials.gov Identifier: NCT01774669 (15 January 2013).

Figures

Figure 1
Figure 1
Study overview. BL, Baseline; conv., Conventional therapy; T0, Preintervention; T1, Measurement after eight treatment sessions; T2, Measurement event after intervention; FU, Measurement event after 2-month follow-up period; YG, YouGrabber.
Figure 2
Figure 2
Virtual reality training system setup (YouGrabber). The model wears hand gloves with movement sensors attached. The screen displays real-time hand and finger positions.

References

    1. Weiss P, Kizony R, Feintuch U, Katz N. Virtual reality in neurorehabilitation. In: Selzer M, Cohen LG, Gage F, Clarke S, Duncan P, editors. Textbook of Neural Repair and Rehabilitation. 2006. pp. 182–197.
    1. Laver KE, George S, Thomas S, Deutsch JE, Crotty M. Cochrane Database Syst Rev. 2011. Virtual reality for stroke rehabilitation.
    1. A holistic approach to stroke care how a therapeutic group was set up to help patients come to terms with the psychological effects of strokeNurs Times 2002, 98:33–35.
    1. You SH, Jang SH, Kim YH, Hallett M, Ahn SH, Kwon YH, Kim JH, Lee MY. Virtual reality–induced cortical reorganization and associated locomotor recovery in chronic stroke: an experimenter-blind randomized study. Stroke. 2005;36:1166–1171. doi: 10.1161/01.STR.0000162715.43417.91.
    1. Centers for Disease Control and Prevention Prevalence of stroke—United States, 2005. MMWR Morb Mortal Wkly Rep. 2007;56:469–474.
    1. The Innovative Medicines Initiative (IMI) Strategic Research Agenda 2006.
    1. Aben I, Denollet J, Lousberg R, Verhey F, Wojciechowski F, Honig A. Personality and vulnerability to depression in stroke patients: a 1-year prospective follow-up study. Stroke. 2002;33:2391–2395. doi: 10.1161/01.STR.0000029826.41672.2E.
    1. Hoffmann TC, Glasziou PP, Boutron I, Milne R, Perera R, Moher D, Altman DG, Barbour V, Macdonald H, Johnston M, Lamb SE, Dixon-Woods M, McCulloch P, Wyatt JC, Chan AW, Michie S. Better reporting of interventions: template for intervention description and replication (TIDieR) checklist and guide. BMJ. 2014;348:g1687. doi: 10.1136/bmj.g1687.
    1. Eng K, Siekierka E, Pyk P, Chevrier E, Hauser Y, Cameirao M, Holper L, Hägni K, Zimmerli L, Duff A, Schuster C, Bassetti C, Verschure P, Kiper D. Interactive visuo-motor therapy system for stroke rehabilitation. Med Biol Eng Comput. 2007;45:901–907. doi: 10.1007/s11517-007-0239-1.
    1. Luke C, Dodd K, Brock K. Outcomes of the Bobath concept on upper limb recovery following stroke. Clin Rehabil. 2004;18:888–898. doi: 10.1191/0269215504cr793oa.
    1. Barreca S, Wolf SL, Fasoli S, Bohannon R. Treatment interventions for the paretic upper limb of stroke survivors: a critical review. Neurorehabil Neural Repair. 2003;17:220–226. doi: 10.1177/0888439003259415.
    1. Mathiowetz V, Volland G, Kashman N, Weber K. Adult norms for the box and block test of manual dexterity. Am J Occup Ther. 1985;39:386–391. doi: 10.5014/ajot.39.6.386.
    1. Connell LA, Tyson SF. Clinical reality of measuring upper-limb ability in neurologic conditions: a systematic review. Arch Phys Med Rehabil. 2012;93:221–228. doi: 10.1016/j.apmr.2011.09.015.
    1. Chen HM, Chen CC, Hsueh IP, Huang SL, Hsieh CL. Test-retest reproducibility and smallest real difference of 5 hand function tests in patients with stroke. Neurorehabil Neural Repair. 2009;23:435–440. doi: 10.1177/1545968308331146.
    1. Gowland C, Van Hullenaar S, Torresin W, Moreland J, Vanspall B, Barreca S, Ward M, Huijbregts M, Stratford P, Barclay-Goddard R. Chedoke-McMaster Stroke Assessment: Development, Validation, and Administration Manual. Hamilton, ON, Canada: School of Rehabilitation Science, McMaster University; 1995.
    1. Gowland CA. Staging motor impairment after stroke. Stroke. 1990;21(9 Suppl):II19–II21.
    1. Gowland C, Stratford P, Ward M, Moreland J, Torresin W, Van Hullenaar S, Sanford J, Barreca S, Vanspall B, Plews N. Measuring physical impairment and disability with the Chedoke-McMaster Stroke Assessment. Stroke. 1993;24:58–63. doi: 10.1161/01.STR.24.1.58.
    1. Barreca S, Gowland CK, Stratford P, Huijbregts M, Griffiths J, Torresin W, Dunkley M, Miller P, Masters L. Development of the Chedoke Arm and Hand Activity Inventory: theoretical constructs, item generation, and selection. Top Stroke Rehabil. 2004;11:31–42. doi: 10.1310/JU8P-UVK6-68VW-CF3W.
    1. Barreca S, Stratford P, Masters L, Lambert CL, Griffiths J, McBay C. Validation of three shortened versions of the Chedoke Arm and Hand Activity Inventory. Physiother Can. 2006;58:148–156. doi: 10.3138/ptc.58.2.148.
    1. Barreca SR, Stratford PW, Lambert CL, Masters LM, Streiner DL. Test-retest reliability, validity, and sensitivity of the Chedoke Arm and Hand Activity Inventory: a new measure of upper-limb function for survivors of stroke. Arch Phys Med Rehabil. 2005;86:1616–1622. doi: 10.1016/j.apmr.2005.03.017.
    1. Schuster C, Hahn S, Ettlin T. Objectively-assessed outcome measures: a translation and cross-cultural adaptation procedure applied to the Chedoke McMaster Arm and Hand Activity Inventory (CAHAI) BMC Med Res Methodol. 2010;10:106. doi: 10.1186/1471-2288-10-106.
    1. Plummer P, Morris ME, Dunai J. Assessment of unilateral neglect. Phys Ther. 2003;83:732–740.
    1. Duncan PW, Wallace D, Studenski S, Lai SM, Johnson D. Conceptualization of a new stroke-specific outcome measure: the Stroke Impact Scale. Top Stroke Rehabil. 2001;8:19–33. doi: 10.1310/BRHX-PKTA-0TUJ-UYWT.
    1. Duncan PW, Wallace D, Lai SM, Johnson D, Embretson S, Laster LJ. The Stroke Impact Scale Version 2.0: evaluation of reliability, validity, and sensitivity to change. Stroke. 1999;30:2131–2140. doi: 10.1161/01.STR.30.10.2131.
    1. Lin KC, Fu T, Wu CY, Wang YH, Liu JS, Hsieh CJ, Lin SF. Minimal detectable change and clinically important difference of the Stroke Impact Scale in stroke patients. Neurorehabil Neural Repair. 2010;24:486–492. doi: 10.1177/1545968309356295.
    1. Folstein MF, Folstein SE, McHugh PR. “Mini-Mental State”: a practical method for grading the cognitive state of patients for the clinician. J Psychiatr Res. 1975;12:189–198. doi: 10.1016/0022-3956(75)90026-6.
    1. Oldfield RC. The assessment and analysis of handedness: the Edinburgh Inventory. Neuropsychologia. 1971;9:97–113. doi: 10.1016/0028-3932(71)90067-4.
    1. Jansa J, Pogacnik T, Gompertz P. An evaluation of the Extended Barthel Index with acute ischemic stroke patients. Neurorehabil Neural Repair. 2004;18:37–41. doi: 10.1177/0888439003262287.
    1. van Hedel HJA, Wick K, Eng K, Meyer-Heim A: Improving dexterity in children with cerebral palsy: preliminary results of a randomised trial evaluating a glove based VR-system.Proceedings of the 2011 International Conference on Virtual Rehabilitation (ICVR): 2011 June 27–29; Zurich127–132. doi:10.1109/ICVR.2011.5971872
    1. Faul F, Erdfelder E, Lang AG, Buchner A. G*Power 3: a flexible statistical power analysis program for the social, behavioural, and biomedical sciences. Behav Res Methods. 2007;39:175–191. doi: 10.3758/BF03193146.
    1. Starks H, Trinidad SB. Choose your method: a comparison of phenomenology, discourse analysis, and grounded theory. Qual Health Res. 2007;17:1372–1380. doi: 10.1177/1049732307307031.
    1. Kvale S, Brinkmann S. InterViews: Learning the Craft of Qualitative Research Interviewing. 2. Thousand Oaks, CA: Sage; 2009.
    1. Britten N. Qualitative interviews in medical research. BMJ. 1995;311:251–253. doi: 10.1136/bmj.311.6999.251.
    1. Finlay L. Phenomenology for Therapists: Researching the Lived World. Chichester, UK: Wiley-Blackwell; 2011.
    1. Hughes AM, Burridge J, Freeman CT, Donnovan-Hall M, Chappell PH, Lewin PL, Rogers E, Dibb B. Stroke participants’ perceptions of robotic and electrical stimulation therapy: a new approach. Disabil Rehabil Assist Technol. 2011;6:130–138. doi: 10.3109/17483107.2010.509882.
    1. Speziale HS, Carpenter DR. Qualitative Research in Nursing: Advancing the Humanistic Imperative. 4. Philadelphia: Lippincott Williams & Wilkins; 2007.
    1. Braun V, Clarke V. Using thematic analysis in psychology. Qual Res Psychol. 2006;3:77–101. doi: 10.1191/1478088706qp063oa.
    1. Wiltshier F: Researching with NVivo.Forum Qual Soc Res 2011.,12(1):
    1. Mühlmeyer-Mentzel A: The logical structure of data in ATLAS.ti and its advantage for grounded theory studies.Forum Qual Soc Res 2011.,12(1):
    1. Moher D, Hopewell S, Schulz KF, Montori V, Gøtzsche PC, Devereaux PJ, Elbourne D, Egger M, Altman DG. CONSORT 2010 explanation and elaboration: updated guidelines for reporting parallel group randomised trials. BMJ. 2010;340:c869. doi: 10.1136/bmj.c869.
    1. Munro BH. Statistical Methods for Health Care Research. 5. Philadelphia: Lippincott Williams & Wilkins; 2005.
    1. Higgins JP, Altman DG, Gotzsche PC, Juni P, Moher D, Oxman AD, Savovic J, Schulz KF, Weeks L, Sterne JA. The Cochrane Collaboration’s tool for assessing risk of bias in randomised trials. BMJ. 2011;343:d5928. doi: 10.1136/bmj.d5928.

Source: PubMed

3
订阅