The role of "mixed" orexigenic and anorexigenic signals and autoantibodies reacting with appetite-regulating neuropeptides and peptides of the adipose tissue-gut-brain axis: relevance to food intake and nutritional status in patients with anorexia nervosa and bulimia nervosa

Kvido Smitka, Hana Papezova, Karel Vondra, Martin Hill, Vojtech Hainer, Jara Nedvidkova, Kvido Smitka, Hana Papezova, Karel Vondra, Martin Hill, Vojtech Hainer, Jara Nedvidkova

Abstract

Eating disorders such as anorexia (AN) and bulimia nervosa (BN) are characterized by abnormal eating behavior. The essential aspect of AN is that the individual refuses to maintain a minimal normal body weight. The main features of BN are binge eating and inappropriate compensatory methods to prevent weight gain. The gut-brain-adipose tissue (AT) peptides and neutralizing autoantibodies play an important role in the regulation of eating behavior and growth hormone release. The mechanisms for controlling food intake involve an interplay between gut, brain, and AT. Parasympathetic, sympathetic, and serotoninergic systems are required for communication between brain satiety centre, gut, and AT. These neuronal circuits include neuropeptides ghrelin, neuropeptide Y (NPY), peptide YY (PYY), cholecystokinin (CCK), leptin, putative anorexigen obestatin, monoamines dopamine, norepinephrine (NE), serotonin, and neutralizing autoantibodies. This extensive and detailed report reviews data that demonstrate that hunger-satiety signals play an important role in the pathogenesis of eating disorders. Neuroendocrine dysregulations of the AT-gut-brain axis peptides and neutralizing autoantibodies may result in AN and BN. The circulating autoantibodies can be purified and used as pharmacological tools in AN and BN. Further research is required to investigate the orexigenic/anorexigenic synthetic analogs and monoclonal antibodies for potential treatment of eating disorders in clinical practice.

Figures

Figure 1
Figure 1
The role of adipose tissue- (AT-) gut-brain axis peptides in long-term and short-term regulation of food intake. Long-term regulators are adipose-derived food intake-inhibiting hormone leptin or food intake-stimulating hormone neuropeptide Y (NPY) mainly produced by the hypothalamus and also cosecreted with synthesized catecholamines in AT. Hormones produced in the gut are short-term food intake-stimulating hormone ghrelin, or food intake-inhibiting peptide YY (PYY), pancreatic polypeptide (PP), cholecystokinin (CCK), insulin, and putative anorexigen obestatin (the hypothalamus (violet), nucleus tractus solitarius (NTS, blue), sympathetic and serotoninergic areas (red), and vagal nerve parasympathetic area (green)).
Figure 2
Figure 2
The role of up- or downregulated neutralizing autoantibodies (immunoglobulin (Ig) M, IgG, and IgA classes, and changes of their affinity) directed against appetite-regulating neuropeptides and peptides and neurotransmitters (dopamine, dopamine-beta-hydroxylase, and serotonin) in neuropeptidergic transmission and the pathogenesis of eating disorders. Producing excess of free fatty acids (FFA) and ketones to increase the permeability of the blood-brain barrier and to enter the cerebral matter in AN and BN [103]. Starvation, stress, catecholamines, microbial antigens, poststreptococcal autoimmune process (PANDAS), and proinflammatory cytokines decrease blood-brain barrier integrity in parallel with decreased levels of the tight junction protein, occludin [104]. Also autoantibodies against appetite-regulating peptides and neurotransmitters may disrupt the blood-brain barrier and the gut-barrier permeability in AN and BN [268]. Furthermore, gut-related antigens including gut microflora may influence production of specific autoantibodies (IgA class) against appetite-regulating hormones [47]. Indeed, starvation decreases the gut-barrier permeability in AN [102] and may decrease ghrelin autoantibodies (IgM, IgG, and IgA classes) production. However, realimentation-induced changes in the gut-barrier permeability and new antigenic stimulation during refeeding were accompanied by an increase of acylated ghrelin autoantibodies (IgM class) in AN [48].

References

    1. Hsu LKG. Epidemiology of the eating disorders. Psychiatric Clinics of North America. 1996;19(4):681–700.
    1. Vitiello B, Lederhendler I. Research on eating disorders: current status and future prospects. Biological Psychiatry. 2000;47(9):777–786.
    1. Kaye WH, Wagner A, Fudge JL, Paulus M. Neurocircuity of eating disorders. Current Topics in Behavioral Neurosciences. 2011;6:37–57.
    1. DSM-IV-TR: Diagnostic and Statistical Manual of Mental Disorders. 4th edition. Washington, DC, USA: American Psychiatric Association; 2000.
    1. Meguid MM, Yang Z-J, Gleason JR. The gut-brain brain-gut axis in anorexia: toward an understanding of food intake regulation. Nutrition. 1996;12(1):S57–S62.
    1. Smitka K, Papezova H, Vondra K, Hill M, Hainer V, Nedvidkova J. A higher response of plasma neuropeptide Y, growth hormone, leptin levels and extracellular glycerol levels in subcutaneous abdominal adipose tissue to Acipimox during exercise in patients with bulimia nervosa: single-blind, randomized, microdialysis study. Nutrition and Metabolism. 2011;8, article 81
    1. Smitka K, Papezova H, Vondra K, Hill M, Hainer V, Nedvidkova J. Short-term exercise combined with Acipimox administration induces an increase in plasma ACTH levels and its subsequent fall in the recovery phase in bulimic women. Regulatory Peptides. 2013;182:45–52.
    1. Konturek SJ, Konturek JW, Pawlik T, Brzozowski T. Brain-gut axis and its role in the control of food intake. Journal of Physiology and Pharmacology. 2004;55(1):137–154.
    1. Romijn JA, Corssmit EP, Havekes LM, Pijl H. Gut-brain axis. Current Opinion in Clinical Nutrition and Metabolic Care. 2008;11(4):518–521.
    1. Roth CL, Reinehr T. Roles of gastrointestinal and adipose tissue peptides in childhood obesity and changes after weight loss due to lifestyle intervention. Archives of Pediatrics and Adolescent Medicine. 2010;164(2):131–138.
    1. Sedlackova D, Kopeckova J, Papezova H, et al. Changes of plasma obestatin, ghrelin and NPY in anorexia and bulimia nervosa before and after a high-carbohydrate breakfast. Physiological Research. 2011;60:165–173.
    1. Smitka K, Papezova H, Kvasnickova H, et al. Increased response of growth hormone and ghrelin to exercise and anti-lipolytic drug in bulimia nervosa patients. In: Godoy-Matos A, Wass J, editors. Proceedings of the 13th International Congress of Endocrinology; November 2008; Rio de Janeiro, Brazil. International Proceedings Division, Medimond Srl; pp. 445–449. .
    1. Nedvidkova J, Smitka K, Papezova H, Vondra K, Hill M, Hainer V. Acipimox during exercise points to an inhibitory feedback of GH on ghrelin secretion in bulimic and healthy women. Regulatory Peptides. 2011;167(1):134–139.
    1. Sedlackova D, Kopeckova J, Papezova H, et al. Comparison of high-carbohydrate and high-protein breakfast effect on plasma ghrelin, obestatin, NPY and PYY levels in women with anorexia and bulimia nervosa. Nutrition & Metabolism. 2012;9:p. 52.
    1. Arosio M, Ronchi CL, Gebbia C, Cappiello V, Beck-Peccoz P, Peracchi M. Stimulatory effects of ghrelin on circulating somatostatin and pancreatic polypeptide levels. Journal of Clinical Endocrinology and Metabolism. 2003;88(2):701–704.
    1. Stanley S, Wynne K, McGowan B, Bloom S. Hormonal regulation of food intake. Physiological Reviews. 2005;85(4):1131–1158.
    1. Zhang JV, Ren P-G, Avsian-Kretchmer O, et al. Obestatin, a peptide encoded by the ghrelin gene, opposes ghrelin’s effects on food intake. Science. 2005;310(5750):996–999.
    1. Prince AC, Brooks SJ, Stahl D, Treasure J. Systematic review and meta-analysis of the baseline concentrations and physiologic responses of gut hormones to food in eating disorders. American Journal of Clinical Nutrition. 2009;89(3):755–765.
    1. Kaye WH, Frank GK, Bailer UF, et al. Serotonin alterations in anorexia and bulimia nervosa: new insights from imaging studies. Physiology and Behavior. 2005;85(1):73–81.
    1. Kaye WH, Bailer UF, Frank GK, Wagner A, Henry SE. Brain imaging of serotonin after recovery from anorexia and bulimia nervosa. Physiology and Behavior. 2005;86(1-2):15–17.
    1. Kontis D, Theochari E. Dopamine in anorexia nervosa: a systematic review. Behavioural Pharmacology. 2012;23:496–515.
    1. Haleem DJ. Serotonin neurotransmission in anorexia nervosa. Behavioural Pharmacology. 2012;23:478–495.
    1. Kaye WH, Wierenga CE, Bailer UF, Simmons AN, Bischoff-Grethe A. Nothing tastes as good as skinny feels: the neurobiology of anorexia nervosa. Trends in Neurosciences. 2013;36:110–120.
    1. Nonogaki K, Ohashi-Nozue K, Oka Y. A negative feedback system between brain serotonin systems and plasma active ghrelin levels in mice. Biochemical and Biophysical Research Communications. 2006;341(3):703–707.
    1. Bradley RL, Mansfield JPR, Maratos-Flier E. Neuropeptides, including neuropeptide y and melanocortins, mediate lipolysis in murine adipocytes. Obesity Research. 2005;13(4):653–661.
    1. Schulpis KH, Papassotiriou I, Vounatsou M, Karikas GA, Tsakiris S, Chrousos GP. Morning preprandial plasma ghrelin and catecholamine concentrations in patients with phenylketonuria and normal controls: evidence for catecholamine-mediated ghrelin regulation. Journal of Clinical Endocrinology and Metabolism. 2004;89(8):3983–3987.
    1. Nedvídková J, Smitka K, Kopský V, Hainer V. Adiponectin, an adipocyte-derived protein. Physiological Research. 2005;54(2):133–140.
    1. Dostálová I, Smitka K, Papežová H, Kvasničková H, Nedvídková J. The role of adiponectin in increased insulin sensitivity of patients with anorexia nervosa. Vnitrni Lekarstvi. 2006;52(10):887–890.
    1. Dostálová I, Smitka K, Papežová H, Kvasničková H, Nedvídková J. Increased insulin sensitivity in patients with anorexia nervosa: the role of adipocytokines. Physiological Research. 2007;56(5):587–594.
    1. Dostalova I, Bartak V, Papezova H, Nedvidkova J. The effect of short-term exercise on plasma leptin levels in patients with anorexia nervosa. Metabolism. 2007;56(4):497–503.
    1. Vargovic P, Ukropec J, Laukova M, et al. Adipocytes as a new source of catecholamine production. FEBS Letters. 2011;585(14):2279–2284.
    1. Kvetnansky R, Ukropec J, Laukova M, Manz B, Pacak K, Vargovic P. Stress stimulates production of catecholamines in rat adipocytes. Cellular and Molecular Neurobiology. 2012;32(5):801–813.
    1. Krykorkova I, Pacak K, Bartak V, Papezova H, Matejkova-Behanova M, Nedvidkova J. Increased basal and maprotiline-stimulated norepinephrine levels in abdominal fat in patients with anorexia nervosa. Diabetologie Metabolismus Endokrinologie Výživa. 2001;(supplement 3):p. 28.
    1. Bartak V, Nedvidkova J, Vybiral S, et al. Adrenergic regulation of lipolysis in patients with anorexia nervosa during exercise. Physiological Research. 2003;52:p. 24P.
    1. Nedvidkova J, Dostalova I, Bartak V, Papezova H, Pacak K. Increased subcutaneous abdominal tissue norepinephrine levels in patients with anorexia nervosa: an in vivo microdialysis study. Physiological Research. 2004;53:409–413.
    1. Bartak V, Vybiral S, Papezova H, Dostalova I, Pacak K, Nedvidkova J. Basal and exercise-induced sympathetic nervous activity and lipolysis in adipose tissue of patients with anorexia nervosa. European Journal of Clinical Investigation. 2004;34(5):371–377.
    1. Brambilla F. Aetiopathogenesis and pathophysiology of bulimia nervosa: biological bases and implications for treatment. CNS Drugs. 2001;15(2):119–136.
    1. Takimoto Y, Inui A, Kumano H, Kuboki T. Orexigenic/anorexigenic signals in Bulimia nervosa. Current Molecular Medicine. 2003;3(4):349–360.
    1. Jimerson DC, Wolfe BE. Neuropeptides in eating disorders. CNS Spectrums. 2004;9(7):516–522.
    1. Harrold JA. Hypothalamic control of energy balance. Current Drug Targets. 2004;5(3):207–219.
    1. Torsello A, Brambilla F, Tamiazzo L, et al. Central dysregulations in the control of energy homeostasis and endocrine alterations in anorexia and bulimia nervosa. Journal of Endocrinological Investigation. 2007;30(11):962–976.
    1. Nunn K, Frampton I, Lask B. Anorexia nervosa—a noradrenergic dysregulation hypothesis. Medical Hypotheses. 2012;78(5):580–584.
    1. Corcos M, Atger F, Lévy-Soussan P, et al. Bulimia nervosa and autoimmunity. Psychiatry Research. 1999;87(1):77–82.
    1. Fetissov SO, Hamze Sinno M, Coquerel Q, et al. Emerging role of autoantibodies against appetite-regulating neuropeptides in eating disorders. Nutrition. 2008;24(9):854–859.
    1. Fetissov SO, Harro J, Jaanisk M, et al. Autoantibodies against neuropeptides are associated with psychological traits in eating disorders. Proceedings of the National Academy of Sciences of the United States of America. 2005;102(41):14865–14870.
    1. Fetissov SO. In search of the missing link in the regulation of appetite and body weight. Nutrition. 2009;25(3):252–254.
    1. Fetissov SO, Hamze Sinno M, Coëffier M, et al. Autoantibodies against appetite-regulating peptide hormones and neuropeptides: putative modulation by gut microflora. Nutrition. 2008;24(4):348–359.
    1. Terashi M, Asakawa A, Harada T, et al. Ghrelin reactive autoantibodies in restrictive anorexia nervosa. Nutrition. 2011;27(4):407–413.
    1. Radermecker RP, Renard E, Scheen AJ. Circulating insulin antibodies: influence of continuous subcutaneous or intraperitoneal insulin infusion, and impact on glucose control. Diabetes/Metabolism Research and Reviews. 2009;25(6):491–501.
    1. Franke B, Galloway TS, Wilkin TJ. Developments in the prediction of type 1 diabetes mellitus, with special reference to insulin autoantibodies. Diabetes/Metabolism Research and Reviews. 2005;21(5):395–415.
    1. Prioletta A, Muscogiuri G, Sorice GP, et al. In anorexia nervosa, even a small increase in abdominal fat is responsible for the appearance of insulin resistance. Clinical Endocrinology. 2011;75(2):202–206.
    1. Ariyasu H, Takaya K, Tagami T, et al. Stomach is a major source of circulating ghrelin, and feeding state determines plasma ghrelin-like immunoreactivity levels in humans. Journal of Clinical Endocrinology and Metabolism. 2001;86(10):4753–4758.
    1. Zhu X, Cao Y, Voogd K, Steiner DF. On the processing of proghrelin to ghrelin. Journal of Biological Chemistry. 2006;281:38867–38870.
    1. Kojima M, Hosoda H, Date Y, Nakazato M, Matsuo H, Kangawa K. Ghrelin is a growth-hormone-releasing acylated peptide from stomach. Nature. 1999;402(6762):656–660.
    1. Yang J, Brown MS, Liang G, Grishin NV, Goldstein JL. Identification of the acyltransferase that octanoylates ghrelin, an appetite-stimulating peptide hormone. Cell. 2008;132(3):387–396.
    1. Müller TD, Tschöp MH, Jarick I, et al. Genetic variation of the ghrelin activator gene ghrelin O-acyltransferase (GOAT) is associated with anorexia nervosa. Journal of Psychiatric Research. 2011;45(5):706–711.
    1. Kirchner H, Gutierrez JA, Solenberg PJ, et al. GOAT links dietary lipids with the endocrine control of energy balance. Nature Medicine. 2009;15:741–745.
    1. Arvat E, Di Vito L, Broglio F, et al. Preliminary evidence that Ghrelin, the natural GH secretagogue (GHS)-receptor ligand, strongly stimulates GH secretion in humans. Journal of Endocrinological Investigation. 2000;23(8):493–495.
    1. Date Y, Murakami N, Toshinai K, et al. The role of the gastric afferent vagal nerve in Ghrelin-induced feeding and growth hormone secretion in rats. Gastroenterology. 2002;123(4):1120–1128.
    1. Nonogaki K. Ghrelin and feedback systems. Vitamins and Hormones. 2007;77:149–170.
    1. Asakawa A, Inui A, Fujimiya M, et al. Stomach regulates energy balance via acylated ghrelin and desacyl ghrelin. Gut. 2005;54(1):18–24.
    1. Cassoni P, Papotti M, Ghè C, et al. Identification, characterization, and biological activity of specific receptors for natural (ghrelin) and synthetic growth hormone secretagogues and analogs in human breast carcinomas and cell lines. Journal of Clinical Endocrinology and Metabolism. 2001;86(4):1738–1745.
    1. Banks WA, Tschöp M, Robinson SM, Heiman ML. Extent and direction of ghrelin transport across the blood-brain barrier is determined by its unique primary structure. Journal of Pharmacology and Experimental Therapeutics. 2002;302(2):822–827.
    1. Chen C-Y, Inui A, Asakawa A, et al. Des-acyl ghrelin acts by CRF type 2 receptors to disrupt fasted stomach motility in conscious rats. Gastroenterology. 2005;129(1):8–25.
    1. Inhoff T, Wiedenmann B, Klapp BF, Mönnikes H, Kobelt P. Is desacyl ghrelin a modulator of food intake? Peptides. 2009;30(5):991–994.
    1. Sedláčková D, Dostálová I, Hainer V, et al. Simultaneous decrease of plasma obestatin and ghrelin levels after a high-carbohydrate breakfast in healthy women. Physiological Research. 2008;57(1):S29–S37.
    1. Chen HY, Trumbauer ME, Chen AS, et al. Orexigenic action of peripheral ghrelin is mediated by neuropeptide Y and agouti-related protein. Endocrinology. 2004;145(6):2607–2612.
    1. Hozumi H, Yamanouchi K, Nishihara M. Involvement of neuropeptide Y in hyperphagia in human growth hormone transgenic rats. Journal of Veterinary Medical Science. 2006;68(9):959–965.
    1. Date Y, Shimbara T, Koda S, et al. Peripheral ghrelin transmits orexigenic signals through the noradrenergic pathway from the hindbrain to the hypothalamus. Cell Metabolism. 2006;4(4):323–331.
    1. Ogiso K, Asakawa A, Amitani H, Inui A. Ghrelin and anorexia nervosa: a psychosomatic perspective. Nutrition. 2011;27(10):988–993.
    1. Takaya K, Ariyasu H, Kanamoto N, et al. Ghrelin strongly stimulates growth hormone (GH) release in humans. Journal of Clinical Endocrinology and Metabolism. 2000;85(12):4908–4911.
    1. Vestergaard ET, Dall R, Lange KHW, Kjaer M, Christiansen JS, Jorgensen JOL. The ghrelin response to exercise before and after growth hormone administration. Journal of Clinical Endocrinology and Metabolism. 2007;92(1):297–303.
    1. Shiiya T, Nakazato M, Mizuta M, et al. Plasma ghrelin levels in lean and obese humans and the effect of glucose on ghrelin secretion. Journal of Clinical Endocrinology and Metabolism. 2002;87(1):240–244.
    1. Cummings DE, Weigle DS, Scott Frayo R, et al. Plasma ghrelin levels after diet-induced weight loss or gastric bypass surgery. New England Journal of Medicine. 2002;346(21):1623–1630.
    1. Nakazato M, Murakami N, Date Y, et al. A role for ghrelin in the central regulation of feeding. Nature. 2001;409(6817):194–198.
    1. Van Der Lely AJ. Ghrelin and new metabolic frontiers. Hormone Research. 2009;71(1):129–133.
    1. Kojima M, Kangawa K. Ghrelin: structure and function. Physiological Reviews. 2005;85(2):495–522.
    1. Liu J, Lin H, Cheng P, Hu X, Lu H. Effects of ghrelin on the proliferation and differentiation of 3T3-L1 preadipocytes. Journal of Huazhong University of Science and Technology. 2009;29(2):227–230.
    1. Rodríguez A, Gómez-Ambrosi J, Catalán V, et al. Acylated and desacyl ghrelin stimulate lipid accumulation in human visceral adipocytes. International Journal of Obesity. 2009;33:541–552.
    1. Broglio F, Gottero C, Prodam F, et al. Non-acylated ghrelin counteracts the metabolic but not the neuroendocrine response to acylated ghrelin in humans. Journal of Clinical Endocrinology and Metabolism. 2004;89(6):3062–3065.
    1. Thompson NM, Gill DAS, Davies R, et al. Ghrelin and des-octanoyl ghrelin promote adipogenesis directlyin vivo by a mechanism independent of GHS-R1a. Endocrinology. 2004;145(1):234–242.
    1. Tebbe JJ, Tebbe CG, Mronga S, Ritter M, Schäfer MKH. Central neuropeptide Y receptors are involved in 3rd ventricular ghrelin induced alteration of colonic transit time in conscious fed rats. BMC Gastroenterology. 2005;5, article 5
    1. Kos K, Harte AL, O’Hare PJ, Kumar S, McTernan PG. Ghrelin and the differential regulation of des-acyl (DSG) and oct-anoyl ghrelin (OTG) in human adipose tissue (AT) Clinical Endocrinology. 2009;70(3):383–389.
    1. Misra M, Miller KK, Stewart V, et al. Ghrelin and bone metabolism in adolescent girls with anorexia nervosa and healthy adolescents. Journal of Clinical Endocrinology and Metabolism. 2005;90(9):5082–5087.
    1. Otto B, Cuntz U, Fruehauf E, et al. Weight gain decreases elevated plasma ghrelin concentrations of patients with anorexia nervosa. European Journal of Endocrinology. 2001;145(5):669–673.
    1. Otto B, Tschöp M, Cuntz U. Letter to the Editor: similar fasting ghrelin levels in binge eating/purging anorexia nervosa and restrictive anorexia nervosa. Psychoneuroendocrinology. 2004;29(5):692–693.
    1. Troisi A, Di Lorenzo G, Lega I, et al. Plasma ghrelin in anorexia, bulimia, and binge-eating disorder: relations with eating patterns and circulating concentrations of cortisol and thyroid hormones. Neuroendocrinology. 2005;81(4):259–266.
    1. Yin X, Li Y, Xu G, An W, Zhang W. Ghrelin fluctuation, what determines its production? Acta Biochimica et Biophysica Sinica. 2009;41(3):188–197.
    1. Karczewska-Kupczewska M, Straczkowski M, Adamska A, et al. Increased suppression of serum ghrelin concentration by hyperinsulinemia in women with anorexia nervosa. European Journal of Endocrinology. 2010;162(2):235–239.
    1. Janas-Kozik M, Krupka-Matuszczyk I, Malinowska-Kolodziej I, Lewin-Kowalik J. Total ghrelin plasma level in patients with the restrictive type of anorexia nervosa. Regulatory Peptides. 2007;140(1-2):43–46.
    1. Nedvidkova J, Krykorkova I, Bartak V, et al. Loss of meal-induced decrease in plasma ghrelin levels in patients with anorexia nervosa. Journal of Clinical Endocrinology and Metabolism. 2003;88(4):1678–1682.
    1. Hotta M, Ohwada R, Katakami H, Shibasaki T, Hizuka N, Takano K. Plasma levels of intact and degraded ghrelin and their responses to glucose infusion in anorexia nervosa. Journal of Clinical Endocrinology and Metabolism. 2004;89(11):5707–5712.
    1. Germain N, Galusca B, Grouselle D, et al. Ghrelin and obestatin circadian levels differentiate bingeing-purging from restrictive anorexia nervosa. Journal of Clinical Endocrinology and Metabolism. 2010;95(6):3057–3062.
    1. Scacchi M, Pincelli AI, Cavagnini F. Nutritional status in the neuroendocrine control of growth hormone secretion: the model of anorexia nervosa. Frontiers in Neuroendocrinology. 2003;24(3):200–224.
    1. Støving RK, Andersen M, Flyvbjerg A, et al. Indirect evidence for decreased hypothalamic somatostatinergic tone in anorexia nervosa. Clinical Endocrinology. 2002;56(3):391–396.
    1. Gianotti L, Fassino S, Daga GA, et al. Effects of free fatty acids and acipimox, a lipolysis inhibitor, on the somatotroph responsiveness to ghrh in anorexia nervosa. Clinical Endocrinology. 2000;52(6):713–720.
    1. Broglio F, Gianotti L, Destefanis S, et al. The endocrine response to acute ghrelin administration is blunted in patients with anorexia nervosa, a ghrelin hypersecretory state. Clinical Endocrinology. 2004;60(5):592–599.
    1. Misra M, Klibanski A. The neuroendocrine basis of anorexia nervosa and its impact on bone metabolism. Neuroendocrinology. 2011;93(2):65–73.
    1. Fazeli PK, Lawson EA, Prabhakaran R, et al. Effects of recombinant human growth hormone in anorexia nervosa: a randomized, placebo-controlled study. Journal of Clinical Endocrinology and Metabolism. 2010;95(11):4889–4897.
    1. Hasan TF, Hasan H. Anorexia nervosa: a unified neurological perspective. International Journal of Medical Sciences. 2011;8(8):679–703.
    1. Fazeli PK, Misra M, Goldstein M, Miller KK, Klibanski A. Fibroblast growth factor-21 may mediate growth hormone resistance in anorexia nervosa. Journal of Clinical Endocrinology and Metabolism. 2010;95(1):369–374.
    1. Monteleone P, Carratù R, Cartenì M, et al. Intestinal permeability is decreased in anorexia nervosa. Molecular Psychiatry. 2004;9(1):76–80.
    1. Naisberg Y, Modai I, Weizman A. Metabolic bioenergy homeostatic disruption: a cause of anorexia nervosa. Medical Hypotheses. 2001;56(4):454–461.
    1. Hornig M, Lipkin WI. Immune-mediated animal models of Tourette syndrome. Neuroscience & Biobehavioral Reviews. 2013;37:1120–1138.
    1. Germain N, Galusca B, Grouselle D, et al. Ghrelin/obestatin ratio in two populations with low bodyweight: constitutional thinness and anorexia nervosa. Psychoneuroendocrinology. 2009;34(3):413–419.
    1. Nakai Y, Hosoda H, Nin K, et al. Plasma levels of active form of ghrelin during oral glucose tolerance test in patients with anorexia nervosa. European Journal of Endocrinology. 2003;149(1):R1–R3.
    1. Harada T, Nakahara T, Yasuhara D, et al. Obestatin, acyl ghrelin, and des-acyl ghrelin responses to an oral glucose tolerance test in the restricting type of anorexia nervosa. Biological Psychiatry. 2008;63(2):245–247.
    1. Tanaka M, Naruo T, Muranaga T, et al. Increased fasting plasma ghrelin levels in patients with bulimia nervosa. European Journal of Endocrinology. 2002;146(6):R1–R3.
    1. Tanaka M, Naruo T, Nagai N, et al. Habitual binge/purge behavior influences circulating ghrelin levels in eating disorders. Journal of Psychiatric Research. 2003;37(1):17–22.
    1. Monteleone P, Martiadis V, Rigamonti AE, et al. Investigation of peptide YY and ghrelin responses to a test meal in bulimia nervosa. Biological Psychiatry. 2005;57(8):926–931.
    1. Kojima S, Nakahara T, Nagai N, et al. Altered ghrelin and peptide YY responses to meals in bulimia nervosa. Clinical Endocrinology. 2005;62(1):74–78.
    1. Monteleone P, Martiadis V, Fabrazzo M, Serritella C, Maj M. Ghrelin and leptin responses to food ingestion in bulimia nervosa: implications for binge-eating and compensatory behaviours. Psychological Medicine. 2003;33(8):1387–1394.
    1. Fassino S, Abbate Daga G, Mondelli V, et al. Hormonal and metabolic responses to acute ghrelin administration in patients with bulimia nervosa. Psychoneuroendocrinology. 2005;30(6):534–540.
    1. Agnew AJ, Robinson E, McVicar CM, et al. The gastrointestinal peptide obestatin induces vascular relaxation via specific activation of endothelium-dependent NO signalling. British Journal of Pharmacology. 2012;166(1):327–338.
    1. Nogueiras R, Pfluger P, Tovar S, et al. Effects of obestatin on energy balance and growth hormone secretion in rodents. Endocrinology. 2007;148(1):21–26.
    1. Zamrazilová H, Hainer V, Sedláčková D, et al. Plasma obestatin levels in normal weight, obese and anorectic women. Physiological Research. 2008;57(1):S49–S55.
    1. Haider DG, Schindler K, Prager G, et al. Serum retinol-binding protein 4 is reduced after weight loss in morbidly obese subjects. Journal of Clinical Endocrinology and Metabolism. 2007;92(3):1168–1171.
    1. Gourcerol G, St-Pierre DH, Taché Y. Lack of obestatin effects on food intake: should obestatin be renamed ghrelin-associated peptide (GAP)? Regulatory Peptides. 2007;141(1–3):1–7.
    1. Van Dijck A, Van Dam D, Vergote V, et al. Central administration of obestatin fails to show inhibitory effects on food and water intake in mice. Regulatory Peptides. 2009;156(1–3):77–82.
    1. Qader SS, Håkanson R, Rehfeld JF, Lundquist I, Salehi A. Proghrelin-derived peptides influence the secretion of insulin, glucagon, pancreatic polypeptide and somatostatin: a study on isolated islets from mouse and rat pancreas. Regulatory Peptides. 2008;146(1–3):230–237.
    1. Samson WK, White MM, Price C, Ferguson AV. Obestatin acts in brain to inhibit thirst. American Journal of Physiology. Regulatory Integrative and Comparative Physiology. 2007;292(1):R637–R643.
    1. Camiña JP, Campos JF, Caminos JE, Dieguez C, Casanueva FF. Obestatin-mediated proliferation of human retinal pigment epithelial cells: regulatory mechanisms. Journal of Cellular Physiology. 2007;211(1):1–9.
    1. Kapica M, Zabielska M, Puzio I, et al. Obestatin stimulates the secretion of pancreatic juice enzymes through a vagal pathway in anaesthetized rats—preliminary results. Journal of Physiology and Pharmacology. 2007;58(3):123–130.
    1. Ren A-J, Guo Z-F, Wang Y-K, et al. Inhibitory effect of obestatin on glucose-induced insulin secretion in rats. Biochemical and Biophysical Research Communications. 2008;369(3):969–972.
    1. Pan W, Tu H, Kastin AJ. Differential BBB interactions of three ingestive peptides: obestatin, ghrelin, and adiponectin. Peptides. 2006;27(4):911–916.
    1. Vergote V, Van Dorpe S, Peremans K, Burvenich C, De Spiegeleer B. In vitro metabolic stability of obestatin: kinetics and identification of cleavage products. Peptides. 2008;29(10):1740–1748.
    1. Egido EM, Hernández R, Marco J, Silvestre RA. Effect of obestatin on insulin, glucagon and somatostatin secretion in the perfused rat pancreas. Regulatory Peptides. 2009;152(1–3):61–66.
    1. Lauwers E, Landuyt B, Arckens L, Schoofs L, Luyten W. Obestatin does not activate orphan G protein-coupled receptor GPR39. Biochemical and Biophysical Research Communications. 2006;351(1):21–25.
    1. Zhang JV, Jahr H, Luo C-W, et al. Obestatin induction of early-response gene expression in gastrointestinal and adipose tissues and the mediatory role of G protein-coupled receptor, GPR39. Molecular Endocrinology. 2008;22(6):1464–1475.
    1. Egerod KL, Holst B, Petersen PS, et al. GPR39 splice variants versus antisense gene LYPD1: expression and regulation in gastrointestinal tract, endocrine pancreas, liver, and white adipose tissue. Molecular Endocrinology. 2007;21(7):1685–1698.
    1. Catalán V, Gómez-Ambrosi J, Rotellar F, et al. The obestatin receptor (GPR39) is expressed in human adipose tissue and is down-regulated in obesity-associated type 2 diabetes mellitus. Clinical Endocrinology. 2007;66(4):598–601.
    1. Dong X-Y, He J-M, Tang S-Q, Li H-Y, Jiang Q-Y, Zou X-T. Is GPR39 the natural receptor of obestatin? Peptides. 2009;30(2):431–438.
    1. Granata R, Settanni F, Gallo D, et al. Obestatin promotes survival of pancreatic β-cells and human islets and induces expression of genes involved in the regulation of β-cell mass and function. Diabetes. 2008;57(4):967–979.
    1. Fujimiya M, Ataka K, Asakawa A, Chen C-Y, Kato I, Inui A. Regulation of gastroduodenal motility: acyl ghrelin, des-acyl ghrelin and obestatin and hypothalamic peptides. Digestion. 2012;85(2):90–94.
    1. Monteleone P, Serritella C, Martiadis V, Scognamiglio P, Maj M. Plasma obestatin, ghrelin, and ghrelin/obestatin ratio are increased in underweight patients with anorexia nervosa but not in symptomatic patients with bulimia nervosa. Journal of Clinical Endocrinology and Metabolism. 2008;93(11):4418–4421.
    1. Nakahara T, Harada T, Yasuhara D, et al. Plasma obestatin concentrations are negatively correlated with body mass index, insulin resistance index, and plasma leptin concentrations in obesity and anorexia nervosa. Biological Psychiatry. 2008;64(3):252–255.
    1. Uehara M, Yasuhara D, Nakahara T, et al. Increase in energy intake leads to a decrease in obestatin in restricting-type of anorexia nervosa. Experimental and Clinical Endocrinology and Diabetes. 2011;119(9):536–539.
    1. Neary NM, Small CJ, Bloom SR. Gut and mind. Gut. 2003;52(7):918–921.
    1. Sahu A, Kalra SP. Neuropeptidergic regulation of feeding behavior: neuropeptide Y. Trends in Endocrinology and Metabolism. 1993;4(7):217–224.
    1. Wynne K, Stanley S, McGowan B, Bloom SR. Appetite control. Journal of Endocrinology. 2005;184(2):291–318.
    1. Turtzo LC, Lane MD. NPY and neuron-adipocyte interactions in the regulation of metabolism. EXS. 2006;(95):133–141.
    1. Turtzo LC, Marx R, Daniel Lane M. Cross-talk between sympathetic neurons and adipocytes in coculture. Proceedings of the National Academy of Sciences of the United States of America. 2001;98(22):12385–12390.
    1. Nogueiras R, Williams LM, Dieguez C. Ghrelin: new molecular pathways modulating appetite and adiposity. Obesity Facts. 2010;3(5):285–292.
    1. Coiro V, Volpi R, Cataldo S, et al. Somatostatin reduces neuropeptide Y rise induced by physical exercise. Hormone and Metabolic Research. 2011;43(5):361–363.
    1. Coiro V, Casti A, Volta E, et al. Effect of physical training on reduction of circulating neuropeptide Y levels in elderly humans. Journal of Endocrinological Investigation. 2010;33(2):132–133.
    1. Antonijevic IA, Murck H, Bohlhalter S, Frieboes R-M, Holsboer F, Steiger A. Neuropeptide Y promotes sleep and inhibits ACTH and cortisol release in young men. Neuropharmacology. 2000;39(8):1474–1481.
    1. Watanobe H, Tamura T. Stimulation by neuropeptide Y of growth hormone secretion in prolactinoma in vivo. Neuropeptides. 1996;30(5):429–432.
    1. Watanobe H, Tamura T. Stimulatory and inhibitory effects of neuropeptide Y on growth hormone secretion in acromegaly in vivo. Neuropeptides. 1997;31(1):29–34.
    1. Pihlajamäki J, Karhapää P, Vauhkonen I, et al. The Leu7Pro polymorphism of the neuropeptide Y gene regulates free fatty acid metabolism. Metabolism. 2003;52(5):643–646.
    1. Billington CJ, Briggs JE, Grace M, Levine AS. Effects of intracerebroventricular injection of neuropeptide Y on energy metabolism. American Journal of Physiology. Regulatory Integrative and Comparative Physiology. 1991;260(2):R321–R327.
    1. Kos K, Harte AL, James S, et al. Secretion of neuropeptide Y in human adipose tissue and its role in maintenance of adipose tissue mass. American Journal of Physiology. Endocrinology and Metabolism. 2007;293(5):E1335–E1340.
    1. Yang K, Guan H, Arany E, Hill DJ, Cao X. Neuropeptide Y is produced in visceral adipose tissue and promotes proliferation of adipocyte precursor cells via the Y1 receptor. FASEB Journal. 2008;22(7):2452–2464.
    1. Kos K, Baker AR, Jernas M, et al. DPP-IV inhibition enhances the antilipolytic action of NPY in human adipose tissue. Diabetes, Obesity and Metabolism. 2009;11(4):285–292.
    1. Kuo LE, Czarnecka M, Kitlinska JB, Tilan JU, Kvetňanský R, Zukowska Z. Chronic stress, combined with a high-fat/high-sugar diet, shifts sympathetic signaling toward neuropeptide Y and leads to obesity and the metabolic syndrome. Annals of the New York Academy of Sciences. 2008;1148:232–237.
    1. Eaton K, Sallee FR, Sah R. Relevance of neuropeptide Y (NPY) in psychiatry. Current Topics in Medicinal Chemistry. 2007;7(17):1645–1659.
    1. Gruninger TR, LeBoeuf B, Liu Y, Garcia LR. Molecular signaling involved in regulating feeding and other motivated behaviors. Molecular Neurobiology. 2007;35(1):1–19.
    1. Hökfelt T, Stanic D, Sanford SD, et al. NPY and its involvement in axon guidance, neurogenesis, and feeding. Nutrition. 2008;24(9):860–868.
    1. Hargrave SL, Kinzig KP. Repeated gastric distension alters food intake and neuroendocrine profiles in rats. Physiology and Behavior. 2012;105(4):975–981.
    1. Baranowska B, Wasilewska-Dziubińska E, Radzikowska M, Płonowski A, Roguski K. Neuropeptide Y, galanin, and leptin release in obese women and in women with anorexia nervosa. Metabolism. 1997;46(12):1384–1389.
    1. Nedvídková J, Papezová H, Haluzík M, Schreiber V. Interaction between serum leptin levels and hypothalamo-hypophyseal-thyroid axis in patients with anorexia nervosa. Endocrine Research. 2000;26(2):219–230.
    1. Baranowska B, Wolinska-Witort E, Wasilewska-Dziubinska E, Roguski K, Chmielowska M. Plasma leptin, neuropeptide Y (NPY) and galanin concentrations in bulimia nervosa and in anorexia nervosa. Neuroendocrinology Letters. 2001;22(5):356–358.
    1. Oświecimska J, Ziora K, Geisler G, Broll-Waśka K. Prospective evaluation of leptin and neuropeptide Y (NPY) serum levels in girls with anorexia nervosa. Neuroendocrinology Letters. 2005;26(4):301–304.
    1. Sederholm F, Ammar AA, Södersten P. Intake inhibition by NPY: role of appetitive ingestive behavior and aversion. Physiology and Behavior. 2002;75(4):567–575.
    1. Ammar AA, Nergårdh R, Fredholm BB, Brodin U, Södersten P. Intake inhibition by NPY and CCK-8: a challenge of the notion of NPY as an “Orexigen”. Behavioural Brain Research. 2005;161(1):82–87.
    1. Nergårdh R, Ammar A, Brodin U, Bergström J, Scheurink A, Södersten P. Neuropeptide Y facilitates activity-based-anorexia. Psychoneuroendocrinology. 2007;32(5):493–502.
    1. Pedersen-Bjergaard U, Høst U, Kelbæk H, et al. Influence of meal composition on postprandial peripheral plasma concentrations of vasoactive peptides in man. Scandinavian Journal of Clinical and Laboratory Investigation. 1996;56(6):497–503.
    1. Nonaka N, Shioda S, Niehoff ML, Banks WA. Characterization of blood-brain barrier permeability to PYY3-36 in the mouse. Journal of Pharmacology and Experimental Therapeutics. 2003;306(3):948–953.
    1. Batterham RL, Cowley MA, Small CJ, et al. Gut hormone PYY3-36 physiologically inhibits food intake. Nature. 2002;418(6898):650–654.
    1. Brunetti L, Orlando G, Ferrante C, Chiavaroli A, Vacca M. Peptide YY (3–36) inhibits dopamine and norepinephrine release in the hypothalamus. European Journal of Pharmacology. 2005;519(1-2):48–51.
    1. Corp ES, McQuade J, Krasnicki S, Conze DB. Feeding after fourth ventricular administration of neuropeptide Y receptor agonists in rats. Peptides. 2001;22(3):493–499.
    1. Druce MR, Small CJ, Bloom SR. Minireview: gut peptides regulating satiety. Endocrinology. 2004;145(6):2660–2665.
    1. Degen L, Oesch S, Casanova M, et al. Effect of peptide YY3-36 on food intake in humans. Gastroenterology. 2005;129(5):1430–1436.
    1. Harding RK, McDonald TJ. Identification and characterization of the emetic effects of peptide YY. Peptides. 1989;10(1):21–24.
    1. Batterham RL, Cohen MA, Ellis SM, et al. Inhibition of food intake in obese subjects by peptide YY3-36 . New England Journal of Medicine. 2003;349(10):941–948.
    1. Tong J, D'Alessio D. Eating disorders and gastrointestinal peptides. Current Opinion in Endocrinology, Diabetes and Obesity. 2011;18:42–49.
    1. Ueda S-Y, Yoshikawa T, Katsura Y, Usui T, Fujimoto S. Comparable effects of moderate intensity exercise on changes in anorectic gut hormone levels and energy intake to high intensity exercise. Journal of Endocrinology. 2009;203(3):357–364.
    1. Nguyen AD, Herzog H, Sainsbury A. Neuropeptide Y and peptide YY: important regulators of energy metabolism. Current Opinion in Endocrinology, Diabetes and Obesity. 2011;18(1):56–60.
    1. Labelle M, Boulanger Y, Fournier A, St.-Pierre S, Savard R. Tissue-specific regulation of fat cell lipolysis by NPY in 6-OHDA-treated rats. Peptides. 1997;18(6):801–808.
    1. Monteleone P, Castaldo E, Maj M. Neuroendocrine dysregulation of food intake in eating disorders. Regulatory Peptides. 2008;149(1–3):39–50.
    1. Stock S, Leichner P, Wong ACK, et al. Ghrelin, peptide YY, glucose-dependent insulinotropic polypeptide, and hunger responses to a mixed meal in anorexic, obese, and control female adolescents. Journal of Clinical Endocrinology and Metabolism. 2005;90(4):2161–2168.
    1. Misra M, Miller KK, Tsai P, et al. Elevated peptide YY levels in adolescent girls with anorexia nervosa. Journal of Clinical Endocrinology and Metabolism. 2006;91(3):1027–1033.
    1. Nakahara T, Kojima S, Tanaka M, et al. Incomplete restoration of the secretion of ghrelin and PYY compared to insulin after food ingestion following weight gain in anorexia nervosa. Journal of Psychiatric Research. 2007;41(10):814–820.
    1. Lawson EA, Eddy KT, Donoho D, et al. Appetite-regulating hormones cortisol and peptide YY are associated with disordered eating psychopathology, independent of body mass index. European Journal of Endocrinology. 2011;164(2):253–261.
    1. Germain N, Galusca B, Le Roux CW, et al. Constitutional thinness and lean anorexia nervosa display opposite concentrations of peptide YY, glucagon-like peptide 1, ghrelin, and leptin. American Journal of Clinical Nutrition. 2007;85(4):967–971.
    1. Kaye WH, Berrettini W, Gwirtsman H, George DT. Altered cerebrospinal fluid neuropeptide Y and peptide YY immunoreactivity in anorexia and bulimia nervosa. Archives of General Psychiatry. 1990;47(6):548–556.
    1. Gendall KA, Kaye WH, Altemus M, McConaha CW, La Via MC. Leptin, neuropeptide Y, and peptide YY in long-term recovered eating disorder patients. Biological Psychiatry. 1999;46(2):292–299.
    1. Devlin MJ, Kissileff HR, Zimmerli EJ, et al. Gastric emptying and symptoms of bulimia nervosa: effect of a prokinetic agent. Physiology and Behavior. 2012;106(2):238–242.
    1. Geracioti TD, Jr., Liddle RA. Impaired cholecystokinin secretion in bulimia nervosa. New England Journal of Medicine. 1988;319(11):683–688.
    1. Lin HC, Chey WY, Zhao X-T. Release of distal gut peptide YY (PYY) by fat in proximal gut depends on CCK. Peptides. 2000;21(10):1561–1563.
    1. Dockray GJ. Cholecystokinin and gut-brain signalling. Regulatory Peptides. 2009;155(1–3):6–10.
    1. Chandra R, Liddle RA. Cholecystokinin. Current Opinion in Endocrinology, Diabetes and Obesity. 2007;14(1):63–67.
    1. Gibbs J, Young RC, Smith GP. Cholecystokinin decreases food intake in rats. Journal of Comparative and Physiological Psychology. 1973;84(3):488–495.
    1. Degen L, Matzinger D, Drewe J, Beglinger C. The effect of cholecystokinin in controlling appetite and food intake in humans. Peptides. 2001;22(8):1265–1269.
    1. Woods SC. Gastrointestinal Satiety Signals. I. An overview of gastrointestinal signals that influence food intake. American Journal of Physiology. Gastrointestinal and Liver Physiology. 2004;286(1):G7–G13.
    1. Hisadome K, Reimann F, Gribble FM, Trapp S. CCK stimulation of GLP-1 neurons involves α1-adrenoceptor-mediated increase in glutamatergic synaptic inputs. Diabetes. 2011;60(11):2701–2709.
    1. Dourish CT, Rycroft W, Iversen SD. Postponement of satiety by blockade of brain cholecystokinin (CCK-B) receptors. Science. 1989;245(4925):1509–1511.
    1. Chen H, Kent S, Morris MJ. Is the CCK2 receptor essential for normal regulation of body weight and adiposity? European Journal of Neuroscience. 2006;24(5):1427–1433.
    1. Clerc P, Constans MGC, Lulka H, et al. Involvement of cholecystokinin 2 receptor in food intake regulation: hyperphagia and increased fat deposition in cholecystokinin 2 receptor-deficient mice. Endocrinology. 2007;148(3):1039–1049.
    1. Philipp E, Pirke K-M, Kellner MB, Krieg J-C. Disturbed cholecystokinin secretion in patients with eating disorders. Life Sciences. 1991;48(25):2443–2450.
    1. Tamai H, Takemura J, Kobayashi N, Matsubayashi S, Matsukura S, Nakagawa T. Changes in plasma cholecystokinin concentrations after oral glucose tolerance test in anorexia nervosa before and after therapy. Metabolism. 1993;42(5):581–584.
    1. Harty RF, Pearson PH, Solomon TE, McGuigan JE. Cholecystokinin, vasoactive intestinal peptide and peptide histidine methionine responses to feeding in anorexia nervosa. Regulatory Peptides. 1991;36(1):141–150.
    1. Brambilla F, Brunetta M, Peirone A, et al. T-lymphocyte cholecystokinin-8 and beta-endorphin concentrations in eating disorders: I. Anorexia nervosa. Psychiatry Research. 1995;59(1-2):43–50.
    1. Baranowska B, Radzikowska M, Wasilewska-Dziubinska E, Roguski K, Borowiec M. Disturbed release of gastrointestinal peptides in anorexia nervosa and in obesity. Diabetes, Obesity and Metabolism. 2000;2(2):99–103.
    1. Cuntz U, Enck P, Frühauf E, et al. Cholecystokinin revisited: CCK and the hunger trap in anorexia nervosa. PLoS ONE. 2013;8e54457
    1. Lydiard RB, Brewerton TD, Fossey MD, et al. CSF cholecystokinin octapeptide in patients with bulimia nervosa and in normal comparison subjects. American Journal of Psychiatry. 1993;150(7):1099–1101.
    1. Devlin MJ, Walsh BT, Guss JL, Kissileff HR, Liddle RA, Petkova E. Postprandial cholecystokinin release and gastric emptying in patients with bulimia nervosa. American Journal of Clinical Nutrition. 1997;65(1):114–120.
    1. Bailer UF, Kaye WH. A review of neuropeptide and neuroendocrine dysregulation in anorexia and bulimia nervosa. Current Drug Targets. CNS and Neurological Disorders. 2003;2(1):53–59.
    1. Hannon-Engel S. Regulating satiety in bulimia nervosa: the role of cholecystokinin. Perspectives in Psychiatric Care. 2012;48(1):34–40.
    1. Zhang Y, Proenca R, Maffei M, Barone M, Leopold L, Friedman JM. Positional cloning of the mouse obese gene and its human homologue. Nature. 1994;372:425–432.
    1. Bado A, Levasseur S, Attoub S, et al. The stomach is a source of leptin. Nature. 1998;394(6695):790–793.
    1. Jin L, Burguera BG, Couce ME, et al. Leptin and leptin receptor expression in normal and neoplastic human pituitary: evidence of a regulatory role for leptin on pituitary cell proliferation. Journal of Clinical Endocrinology and Metabolism. 1999;84(8):2903–2911.
    1. Frayn KN, Karpe F, Fielding BA, Macdonald IA, Coppack SW. Integrative physiology of human adipose tissue. International Journal of Obesity. 2003;27(8):875–888.
    1. Anubhuti V, Arora S. Leptin and its metabolic interactions—an update. Diabetes, Obesity and Metabolism. 2008;10(11):973–993.
    1. Lammert A, Kiess W, Bottner A, Glasow A, Kratzsch J. Soluble leptin receptor represents the main leptin binding activity in human blood. Biochemical and Biophysical Research Communications. 2001;283(4):982–988.
    1. Stein K, Vasquez-Garibay E, Kratzsch J, Romero-Velarde E, Jahreis G. Influence of nutritional recovery on the leptin axis in severely malnourished children. Journal of Clinical Endocrinology and Metabolism. 2006;91(3):1021–1026.
    1. Halaas JL, Gajiwala KS, Maffei M, et al. Weight-reducing effects of the plasma protein encoded by the obese gene. Science. 1995;269(5223):543–546.
    1. Haynes WG, Morgan DA, Walsh SA, Mark AL, Sivitz WI. Receptor-mediated regional sympathetic nerve activation by leptin. Journal of Clinical Investigation. 1997;100(2):270–278.
    1. Tang-Christensen M, Havel PJ, Jacobs RR, Larsen PJ, Cameron JL. Central administration of leptin inhibits food intake and activates the sympathetic nervous system in rhesus macaques. Journal of Clinical Endocrinology and Metabolism. 1999;84(2):711–717.
    1. Lissett CA, Clayton PE, Shalet SM. The acute leptin response to GH. Journal of Clinical Endocrinology and Metabolism. 2001;86(9):4412–4415.
    1. Kalra SP, Ueno N, Kalra PS. Stimulation of appetite by ghrelin is regulated by leptin restraint: peripheral and central sites of action. Journal of Nutrition. 2005;135(5):1331–1335.
    1. Carro E, Seoane LM, Señaris R, Considine RV, Casanueva FF, Dieguez C. Interaction between leptin and neuropeptide Y on in vivo growth hormone secretion. Neuroendocrinology. 1998;68(3):187–191.
    1. Dieguez C, Carro E, Seoane LM, et al. Regulation of somatotroph cell function by the adipose tissue. International Journal of Obesity. 2000;24(2):S100–S103.
    1. Misra M, Miller KK, Kuo K, et al. Secretory dynamics of leptin in adolescent girls with anorexia nervosa and healthy adolescents. American Journal of Physiology. Endocrinology and Metabolism. 2005;289(3):E373–E381.
    1. Zhao Z, Sakata I, Okubo Y, Koike K, Kangawa K, Sakai T. Gastric leptin, but not estrogen and somatostatin, contributes to the elevation of ghrelin mRNA expression level in fasted rats. Journal of Endocrinology. 2008;196(3):529–538.
    1. Kamegai J, Tamura H, Shimizu T, Ishii S, Sugihara H, Oikawa S. Effects of insulin, leptin, and glucagon on ghrelin secretion from isolated perfused rat stomach. Regulatory Peptides. 2004;119(1-2):77–81.
    1. Tschöp M, Weyer C, Tataranni PA, Devanarayan V, Ravussin E, Heiman ML. Circulating ghrelin levels are decreased in human obesity. Diabetes. 2001;50(4):707–709.
    1. Frühbeck G, Aguado M, Martinez JA. In vitro lipolytic effect of leptin on mouse adipocytes: evidence for a possible autocrine/paracrine role of leptin. Biochemical and Biophysical Research Communications. 1997;240(3):590–594.
    1. Frühbeck G, Jebb SA, Prentice AM. Leptin: physiology and pathophysiology. Clinical Physiology. 1998;18(5):399–419.
    1. Bai Y, Zhang S, Kim K-S, Lee J-K, Kim K-H. Obese gene expression alters the ability of 30A5 preadipocytes to respond to lipogenic hormones. Journal of Biological Chemistry. 1996;271(24):13939–13942.
    1. Ahima RS, Prabakaran D, Mantzoros C, et al. Role of leptin in the neuroendocrine response to fasting. Nature. 1996;382(6588):250–252.
    1. Holtkamp K, Herpertz-Dahlmann B, Mika C, et al. Elevated physical activity and low leptin levels co-occur in patients with anorexia nervosa. Journal of Clinical Endocrinology and Metabolism. 2003;88(11):5169–5174.
    1. Dostalova I, Kopsky V, Duskova J, Papezová H, Pacak K, Nedvidkova J. Leptin concentrations in the abdominal subcutaneous adipose tissue of patients with anorexia nervosa assessed by in vivo microdialysis. Regulatory Peptides. 2005;128:63–68.
    1. Zepf FD, Sungurtekin I, Glass F, et al. Differences in zinc status and the leptin axis in anorexic and recovered adolescents and young adults: a pilot study. Food and Nutrition Research. 2012;56(1):1–8.
    1. Housova J, Anderlova K, Krizová J, et al. Serum adiponectin and resistin concentrations in patients with restrictive and binge/purge form of anorexia nervosa and bulimia nervosa. Journal of Clinical Endocrinology and Metabolism. 2005;90(3):1366–1370.
    1. Monteleone P, Bortolotti F, Fabrazzo M, La Rocca A, Fuschino A, Maj M. Plasma leptin response to acute fasting and refeeding in untreated women with bulimia nervosa. Journal of Clinical Endocrinology and Metabolism. 2000;85(7):2499–2503.
    1. Brewerton TD, Lesem MD, Kennedy A, Garvey WT. Reduced plasma leptin concentrations in bulimia nervosa. Psychoneuroendocrinology. 2000;25(7):649–658.
    1. Zipfel S, Specht T, Blum WF, et al. Leptin-a parameter for body fat measurement in patients with eating disorders. European Eating Disorders Review. 1998;6:38–47.
    1. Jimerson DC, Mantzoros C, Wolfe BE, Metzger ED. Decreased serum leptin in bulimia nervosa. Journal of Clinical Endocrinology and Metabolism. 2000;85(12):4511–4514.
    1. Monteleone P, Martiadis V, Colurcio B, Maj M. Leptin secretion is related to chronicity and severity of the illness in bulimia nervosa. Psychosomatic Medicine. 2002;64(6):874–879.
    1. Vestergaard ET, Hansen TK, Nielsen S, Moller N, Christiansen JS, Jorgensen JOL. Effects of GH replacement therapy in adults on serum levels of leptin and ghrelin: the role of lipolysis. European Journal of Endocrinology. 2005;153(4):545–549.
    1. Inui A. Eating behavior in anorexia nervosa—an excess of both orexigenic and anorexigenic signalling? Molecular Psychiatry. 2001;6(6):620–624.
    1. Miller KK. Endocrine dysregulation in anorexia nervosa update. Journal of Clinical Endocrinology and Metabolism. 2011;96(10):2939–2949.
    1. Acres MJ, Heath JJ, Morris JA. Anorexia nervosa, autoimmunity and the hygiene hypothesis. Medical Hypotheses. 2012;78(6):772–775.
    1. Takii M, Uchigata Y, Kishimoto J, et al. The relationship between the age of onset of type 1 diabetes and the subsequent development of a severe eating disorder by female patients. Pediatric Diabetes. 2011;12(4):396–401.
    1. Prasad-Reddy L. Disordered eating in type 1 diabetes: insulin omission and diabulimia. U.S. Pharmacist. 2012;37:1–8.
    1. Geiger BM, Behr GG, Frank LE, et al. Evidence for defective mesolimbic dopamine exocytosis in obesity-prone rats. FASEB Journal. 2008;22(8):2740–2746.
    1. Van den Eynde F, Treasure J. Neuroimaging in eating disorders and obesity: implications for research. Child and Adolescent Psychiatric Clinics of North America. 2009;18(1):95–115.
    1. Batterham RL, Ffytche DH, Rosenthal JM, et al. PYY modulation of cortical and hypothalamic brain areas predicts feeding behaviour in humans. Nature. 2007;450(7166):106–109.
    1. Malik S, McGlone F, Bedrossian D, Dagher A. Ghrelin modulates brain activity in areas that control appetitive behavior. Cell Metabolism. 2008;7(5):400–409.
    1. Monteleone P, Serritella C, Martiadis V, Maj M. Deranged secretion of ghrelin and obestatin in the cephalic phase of vagal stimulation in women with anorexia nervosa. Biological Psychiatry. 2008;64(11):1005–1008.
    1. Kaye WH, Fudge JL, Paulus M. New insights into symptoms and neurocircuit function of anorexia nervosa. Nature Reviews Neuroscience. 2009;10(8):573–584.
    1. Fladung A-K, Grön G, Grammer K, et al. A neural signature of anorexia nervosa in the ventral striatal reward system. American Journal of Psychiatry. 2010;167(2):206–212.
    1. Monteleone P. New frontiers in endocrinology of eating disorders. Current Topics in Behavioral Neurosciences. 2011;6:189–208.
    1. Monteleone P, Maj M. Dysfunctions of leptin, ghrelin, BDNF and endocannabinoids in eating disorders: beyond the homeostatic control of food intake. Psychoneuroendocrinology. 2013;38:312–330.
    1. Holsen LM, Lawson EA, Blum J, et al. Food motivation circuitry hypoactivation related to hedonic and nonhedonic aspects of hunger and satiety in women with active anorexia nervosa and weight-restored women with anorexia nervosa. Journal of Psychiatry & Neuroscience . 2012;37:322–332.
    1. Capasso A, Petrella C, Milano W. Recent clinical aspects of eating disorders. Reviews on Recent Clinical Trials. 2009;4(1):63–69.
    1. Hebebrand J, Albayrak Ö. Leptin treatment of patients with anorexia nervosa? The urgent need for initiation of clinical studies. European Child and Adolescent Psychiatry. 2012;21(2):63–66.
    1. Bou Khalil R, de Muylder O, Hebborn FL. Treatment of anorexia nervosa with TNF-α down-regulating agents. Eating and Weight Disorders. 2011;16e300
    1. Bissada H, Tasca GA, Barber AM, Bradwejn J. Olanzapine in the treatment of low body weight and obsessive thinking in women with anorexia nervosa: a randomized, double-blind, placebo-controlled trial. American Journal of Psychiatry. 2008;165(10):1281–1288.
    1. Banks WA. Blood-brain barrier as a regulatory interface. Forum of Nutrition. 2010;63:102–110.
    1. Hofbauer KG, Lecourt A-C, Peter J-C. Antibodies as pharmacologic tools for studies on the regulation of energy balance. Nutrition. 2008;24(9):791–797.
    1. Verhagen LAW, Egecioglu E, Luijendijk MCM, Hillebrand JJG, Adan RAH, Dickson SL. Acute and chronic suppression of the central ghrelin signaling system reveals a role in food anticipatory activity. European Neuropsychopharmacology. 2011;21(5):384–392.
    1. Cardona Cano S, Merkestein M, Skibicka KP, Dickson SL, Adan RAH. Role of ghrelin in the pathophysiology of eating disorders: implications for pharmacotherapy. CNS Drugs. 2012;26(4):281–296.
    1. Herpertz-Dahlmann B, Holtkamp K, Konrad K. Eating disorders: anorexia and bulimia nervosa. Handbook of Clinical Neurology. 2012;106:447–462.
    1. Hay PJ, Claudino AM. Clinical psychopharmacology of eating disorders: a research update. International Journal of Neuropsychopharmacology. 2012;15(2):209–222.
    1. Kishi T, Kafantaris V, Sunday S, Sheridan EM, Correll CU. Are antipsychotics effective for the treatment of anorexia nervosa? Results from a systematic review and meta-analysis. Journal of Clinical Psychiatry. 2012;73:e757–e766.
    1. Garcia FD, Coquerel Q, do Rego J-C, et al. Anti-neuropeptide Y plasma immunoglobulins in relation to mood and appetite in depressive disorder. Psychoneuroendocrinology. 2012;73(9):1457–1467.
    1. Fetissov SO, Déchelotte P. The new link between gut-brain axis and neuropsychiatric disorders. Current Opinion in Clinical Nutrition and Metabolic Care. 2011;14(5):477–482.

Source: PubMed

3
订阅