Comparison of Two Toric IOLs with Different Haptic Design: Optical Quality after 1 Year

Kata Miháltz, Michael Lasta, Michael Burgmüller, Pia Veronika Vécsei-Marlovits, Birgit Weingessel, Kata Miháltz, Michael Lasta, Michael Burgmüller, Pia Veronika Vécsei-Marlovits, Birgit Weingessel

Abstract

Background: The purpose of this prospective, randomised study was to interocularly compare the visual performance after implantation of two different toric IOLs with different haptic design.

Methods: 59 subjects with corneal astigmatism greater than 1.25 diopter (D) were implanted with an AT TORBI 709M IOL (Carl Zeiss Meditec AG) in one eye and with a Tecnis toric aspheric IOL (Abbot Medical Optics) in the other eye. Observation procedure was performed 12 months postoperatively. Main outcome measures included uncorrected distance visual acuity (UDVA), manifest refraction, IOL rotation, and IOL position.

Results: Mean UCDVA was 0.04 ± 0.14 logMAR for AT TORBI eyes and 0.06 ± 0.15 logMAR for Tecnis eyes (p = 0.3). The postoperative spherical equivalent values were significantly lower in the AT TORBI group. Mean toric IOL axis rotation was 3.0 ± 2.26 degrees for AT TORBI eyes and 3.27 ± 2.37 for Tecnis eyes (p = 0.5). The mean vertical IOL tilt and vertical decentration values measured with the Visante OCT were significantly larger in the AT TORBI group (p < 0.05).

Conclusions: Both the Tecnis and the AT TORBI toric IOLs successfully reduced ocular astigmatism. Emmetropia could be better achieved with the AT TORBI IOL, whereas the Tecnis showed better positional stability. This trial is registered with ICMJE NCT03371576.

Figures

Figure 1
Figure 1
The distribution of preoperative and postoperative refractive cylinder in the 2 groups. (a) AT TORBI. (b) Tecnis.
Figure 2
Figure 2
Mean values of horizontal and vertical decentration in the two study groups, separately depicted for right and left eyes.
Figure 3
Figure 3
Distribution of anterior chamber depth mean values measured with the Visante OCT preoperatively and 1, 3, 6, and 12 months postoperatively in the two study groups. Error bars indicate standard deviation.
Figure 4
Figure 4
Distribution of postoperative ACD values (mm) 12 months postoperatively in the two study groups.

References

    1. Visser N., Bauer N. J., Nuijts R. M. Toric intraocular lenses: historical overview, patient selection, IOL calculation, surgical techniques, clinical outcomes, and complications. Journal of Cataract and Refractive Surgery. 2013;39(4):624–637. doi: 10.1016/j.jcrs.2013.02.020.
    1. Waltz K. L., Featherstone K., Tsai L., Trentacost D. Clinical outcomes of TECNIS toric intraocular lens implantation after cataract removal in patients with corneal astigmatism. Ophthalmology. 2015;122(1):39–47. doi: 10.1016/j.ophtha.2014.06.027.
    1. Mazzini C. Visual and refractive outcomes after cataract surgery with implantation of a new toric intraocular lens. Case Reports in Ophthalmology. 2013;4(2):48–56. doi: 10.1159/000353389.
    1. Savini G., Næser K. An analysis of the factors influencing the residual refractive astigmatism after cataract surgery with toric intraocular lenses. Investigative Ophthalmology & Visual Science. 2015;56(2):827–835. doi: 10.1167/iovs.14-15903.
    1. Kretz F. T., Breyer D., Klabe K., Auffarth G. U., Kaymak H. Clinical outcomes and capsular bag stability of a four-point haptic bitoric intraocular lens. Journal of Refractive Surgery. 2015;31(7):431–436. doi: 10.3928/1081597X-20150518-11.
    1. Li Y., Bao F. J. Interocular symmetry analysis of bilateral eyes. Journal of Medical Engineering & Technology. 2014;38(4):179–187. doi: 10.3109/03091902.2014.899401.
    1. Leffler C. T., Wilkes M., Reeves J., Mahmood M. A. Postoperative astigmatism in the second eye undergoing cataract surgery. Archives of Ophthalmology. 2011;129(3):295–300. doi: 10.1001/archophthalmol.2010.375.
    1. Kumar D. A., Agarwal A., Prakash J. S., Saravanan Y., Agarwal A. Evaluation of intraocular lens tilt with anterior segment optical coherence tomography. American Journal of Ophthalmology. 2011;151(3):406–412.e2. doi: 10.1016/j.ajo.2010.09.013.
    1. Piñero D. P., Sánchez-Pérez P. J., Alió J. L. Repeatability of measurements obtained with a ray tracing aberrometer. Optometry and Vision Science. 2011;88(9):1099–1105. doi: 10.1097/OPX.0b013e3182223788.
    1. Jun I., Choi Y. J., Kim E. K., Seo K. Y., Kim T. I. Internal spherical aberration by ray tracing-type aberrometry in multifocal pseudophakic eyes. Eye. 2012;26(9):1243–1248. doi: 10.1038/eye.2012.129.
    1. Thibos L. N., Horner D. Power vector analysis of the optical outcome of refractive surgery. Journal of Cataract and Refractive Surgery. 2001;27(1):80–85. doi: 10.1016/S0886-3350(00)00797-5.
    1. Hanley J. A., Negassa A., Edwardes M. D. B., Forester J. E. Statistical analysis of correlated data using generalized estimating equations: an orientation. American Journal of Epidemiology. 2003;157(4):364–375. doi: 10.1093/aje/kwf215.
    1. Sheppard A. L., Wolffsohn J. S., Bhatt U., et al. Clinical outcomes after implantation of a new hydrophobic acrylic toric IOL during routine cataract surgery. Journal of Cataract and Refractive Surgery. 2013;39(1):41–47. doi: 10.1016/j.jcrs.2012.08.055.
    1. Hirnschall N., Maedel S., Weber M., Findl O. Rotational stability of a single-piece toric acrylic intraocular lens: a pilot study. American Journal of Ophthalmology. 2014;157(2):405–411.e1. doi: 10.1016/j.ajo.2013.09.032.
    1. Scialdone A., De Gaetano F., Monaco G. Visual performance of 2 aspheric toric intraocular lenses: comparative study. Journal of Cataract & Refractive Surgery. 2013;39(6):906–914. doi: 10.1016/j.jcrs.2013.01.037.
    1. Bascaran L., Mendicute J., Macias-Murelaga B., Arbelaitz N., Martinez-Soroa I. Efficacy and stability of AT TORBI 709 M toric IOL. Journal of Refractive Surgery. 2013;29(3):194–199. doi: 10.3928/1081597X-20130129-02.
    1. Patel C. K., Ormonde S., Rosen P. H., Bron A. J. Postoperative intraocular lens rotation: a randomized comparison of plate and loop haptic implants. Ophthalmology. 1999;106(11):2190–2196. doi: 10.1016/S0161-6420(99)90504-3.
    1. Fam H. B., Lim K. L. Meridional analysis for calculating the expected spherocylindrical refraction in eyes with toric intraocular lenses. Journal of Cataract & Refractive Surgery. 2007;33(12):2072–2076. doi: 10.1016/j.jcrs.2007.07.034.
    1. Goggin M., Moore S., Esterman A. Toric intraocular lens outcome using the manufacturer’s prediction of corneal plane equivalent intraocular lens cylinder power. Archives of Ophthalmology. 2011;129(8):1004–1008. doi: 10.1001/archophthalmol.2011.178.
    1. Weber M., Hirnschall N., Rigal K., Findl O. Effect of a capsular tension ring on axial intraocular lens position. Journal of Cataract and Refractive Surgery. 2015;41(1):122–125. doi: 10.1016/j.jcrs.2014.04.035.
    1. Piñero D. P., Camps V. J., Ramón M. L., Mateo V., Pérez-Cambrodí R. J. Error induced by the estimation of the corneal power and the effective lens position with a rotationally asymmetric refractive multifocal intraocular lens. International Journal of Ophthalmology. 2015;8(3):501–507. doi: 10.3980/j.issn.2222-3959.2015.03.12.
    1. Miyata K., Kataoka Y., Matsunaga H. M., Minami K. Prospective comparison of one-piece and three-piece Tecnis aspheric intraocular lenses: 1-year stability and its effect on visual function. Current Eye Research. 2015;40(9):930–935. doi: 10.3109/02713683.2014.968936.
    1. Hirnschall N., Nishi Y., Crnej A., et al. Capsular bag stability and posterior capsule opacification of a plate-haptic design microincision cataract surgery intraocular lens: 3-year results of a randomised trial. British Journal of Ophthalmology. 2013;97(12):1565–1568. doi: 10.1136/bjophthalmol-2013-303710.
    1. User Group for Laser Interference Biometry. Optimized IOL constants for the Zeiss IOLMaster. October 2016, .

Source: PubMed

3
订阅