MEDI6012: Recombinant Human Lecithin Cholesterol Acyltransferase, High-Density Lipoprotein, and Low-Density Lipoprotein Receptor-Mediated Reverse Cholesterol Transport

Richard T George, Liron Abuhatzira, Susan M Stoughton, Sotirios K Karathanasis, Dewei She, ChaoYu Jin, Nicholas A P S Buss, Rebecca Bakker-Arkema, Emily L Ongstad, Michael Koren, Boaz Hirshberg, Richard T George, Liron Abuhatzira, Susan M Stoughton, Sotirios K Karathanasis, Dewei She, ChaoYu Jin, Nicholas A P S Buss, Rebecca Bakker-Arkema, Emily L Ongstad, Michael Koren, Boaz Hirshberg

Abstract

Background MEDI6012 is recombinant human lecithin cholesterol acyltransferase, the rate-limiting enzyme in reverse cholesterol transport. Infusions of lecithin cholesterol acyltransferase have the potential to enhance reverse cholesterol transport and benefit patients with coronary heart disease. The purpose of this study was to test the safety, pharmacokinetic, and pharmacodynamic profile of MEDI6012. Methods and Results This phase 2a double-blind study randomized 48 subjects with stable coronary heart disease on a statin to a single dose of MEDI6012 or placebo (6:2) (NCT02601560) with ascending doses administered intravenously (24, 80, 240, and 800 mg) and subcutaneously (80 and 600 mg). MEDI6012 demonstrated rates of treatment-emergent adverse events that were similar to those of placebo. Dose-dependent increases in high-density lipoprotein cholesterol were observed with area under the concentration-time curves from 0 to 96 hours of 728, 1640, 3035, and 5318 should be: mg·h/mL in the intravenous dose groups and 422 and 2845 mg·h/mL in the subcutaneous dose groups. Peak mean high-density lipoprotein cholesterol percent change was 31.4%, 71.4%, 125%, and 177.8% in the intravenous dose groups and 18.3% and 111.2% in the subcutaneous dose groups, and was accompanied by increases in endogenous apoA1 (apolipoprotein A1) and non-ATP-binding cassette transporter A1 cholesterol efflux capacity. Decreases in apoB (apolipoprotein B) were observed across all dose levels and decreases in atherogenic small low-density lipoprotein particles by 41%, 88%, and 79% at the 80-, 240-, and 800-mg IV doses, respectively. Conclusions MEDI6012 demonstrated an acceptable safety profile and increased high-density lipoprotein cholesterol, endogenous apoA1, and non-ATP-binding cassette transporter A1 cholesterol efflux capacity while reducing the number of atherogenic low-density lipoprotein particles. These findings are supportive of enhanced reverse cholesterol transport and a functional high-density lipoprotein phenotype. Registration URL: https://www.clinicaltrials.gov; Unique identifier: NCT02601560.

Keywords: atherosclerosis; cholesterol efflux capacity; cholesterol homeostasis; cholesterol reverse cholesterol transport; high‐density lipoprotein cholesterol.

Conflict of interest statement

Dr George is an employee of AstraZeneca. Dr George, Dr Karathanasis, Dr She, Dr Buss, C. Jin, and Dr Hirshberg have stock ownership and/or stock options in AstraZeneca. Dr Abuhatzira and Dr Stoughton had stock ownership/options in AstraZeneca at the time the research was performed. Drs She and Abuhatzira are current employees of Viela Bio. Dr Karathanasis is an employee of NeoProgen and is a volunteer for the National Heart, Lung, and Blood Institute, National Institutes of Health. Dr Buss is an employee of REGENXBIO Inc. Dr Stoughton is an employee of C4 Medical Writing, LLC. C. Jin is an employee of Gilead Sciences. R. Bakker‐Arkema was a paid consultant for MedImmune (AstraZeneca) at the time the research was performed and is currently at BIA Clinical Group. Dr Koren received research funding from AstraZeneca to enroll subjects whose data are reported in this article.

Figures

Figure 1. Study flow diagram and additional…
Figure 1. Study flow diagram and additional design details.
pbo indicates placebo; PD, pharmacodynamics; and PK, pharmacokinetics.
Figure 2. Change from baseline (milligrams per…
Figure 2. Change from baseline (milligrams per deciliter) in serum concentration over time for HDL‐C (A), HDL‐CE (B), CE (C), ApoA1 (D), LDL‐C (E), and ApoB (F).
Mean baseline levels are listed in the following order: placebo intravenous, MEDI6012 intravenous group, placebo subcutaneous, MEDI6012 SC group, respectively. HDL‐C: 35, 34.7, 33.8, and 39.1 mg/dL; HDL‐CE: 28.9, 29, 28.8, and 33 mg/dL; CE: 108.3, 103.3, 114, and 110.4 mg/dL; apoA1: 127.0, 121.3, 116.3, and 129.5 mg/dL. LDL‐C: 82.7, 78, 80.5, and 78.2 mg/dL; apoB: 79.1, 74.1, 80.8, and 74.4 mg/dL. Error bars show standard error of the mean. ApoA1 indicates apolipoprotein A1; ApoB, apolipoprotein B; CE, cholesteryl ester; HDL‐C, high‐density lipoprotein cholesterol; HDL‐CE, high‐density lipoprotein cholesteryl ester; and LDL‐C, low‐density lipoprotein cholesterol.
Figure 3. Box and whisker plots for…
Figure 3. Box and whisker plots for area under the curve (AUC) from 0 to 96 hours (milligrams per hour per deciliter) for high‐density lipoprotein cholesterol (HDL‐C) (A), high‐density lipoprotein cholesteryl ester (HDL‐CE) (B), cholesteryl ester (C), apolipoprotein A1 (D), low‐density lipoprotein cholesterol (LDL‐C) (E), and apolipoprotein B (F).
Results for other lipid measurements can be found in Table S2. Error bars show standard error of the mean. P‐IV indicates placebo (intravenous); and P‐SC, placebo (subcutaneous).
Figure 4. Change from baseline in small…
Figure 4. Change from baseline in small low‐density lipoprotein (LDL) particle concentration overall (A) and apolipoprotein B (ApoB) area under the curve from 0 to 96 hours (AUC0–96h) (B) according to statin intensity.
Statin intensity was classified according to the American College of Cardiology/American Heart Association guidelines on treatment of blood cholesterol.P values were calculated using the Mann‐Whitney nonparametric 2‐tailed t test.
Figure 5. Change from baseline in pre–beta‐1…
Figure 5. Change from baseline in pre–beta‐1 high‐density lipoprotein (preB1‐HDL) (A), ATP‐binding cassette A1 (ABCA1) (B), Global (C), and non‐ABCA1 (D) cholesterol efflux capacity (CEC).
Figure 6. Effect of MEDI6012 on biomarkers…
Figure 6. Effect of MEDI6012 on biomarkers of reverse cholesterol transport.
αHDL indicates alpha high‐density lipoprotein; ABCA1, ATP‐binding cassette A1; ABCG1, ATP‐binding cassette transporter G1; ApoA1, indicates apolipoprotein A1; ApoB, apolipoprotein B; CE, cholesteryl ester; CETP, cholesteryl ester transfer protein; FC, free cholesterol; HDL, high‐density lipoprotein; HDL‐C, high‐density lipoprotein cholesterol; HDL‐CE, high‐density lipoprotein cholesteryl ester; LCAT, lecithin cholesterol acyltransferase; LDL, low‐density lipoprotein; LDL‐C, low‐density lipoprotein cholesterol; LDLR, low‐density lipoprotein receptor; pre‐β‐HDL, pre‐beta high‐density lipoprotein; SRB1, Scavenger Receptor Class B type 1; TG, triglyceride; and VLDL, very low‐density lipoprotein.

References

    1. Collaboration ERF , Di Angelantonio E, Sarwar N, Perry P, Kaptoge S, Ray KK, Thompson A, Wood AM, Lewington S, Sattar N, Packard CJ, et al. Major lipids, apolipoproteins, and risk of vascular disease. JAMA. 2009;302:1993–2000. DOI: 10.1001/jama.2009.1619.
    1. Pekkanen J, Linn S, Heiss G, Suchindran CM, Leon A, Rifkind BM, Tyroler HA. Ten‐year mortality from cardiovascular disease in relation to cholesterol level among men with and without preexisting cardiovascular disease. N Engl J Med. 1990;322:1700–1707. DOI: 10.1056/NEJM199006143222403.
    1. Wilson PW, Abbott RD, Castelli WP. High density lipoprotein cholesterol and mortality. The Framingham Heart Study. Arteriosclerosis. 1988;8:737–741. DOI: 10.1161/01.atv.8.6.737.
    1. Barter PJ, Caulfield M, Eriksson M, Grundy SM, Kastelein JJP, Komajda M, Lopez‐Sendon J, Mosca L, Tardif J‐C, Waters DD, et al. Effects of torcetrapib in patients at high risk for coronary events. N Engl J Med. 2007;357:2109–2122. DOI: 10.1056/NEJMoa0706628.
    1. Investigators A‐H , Boden WE, Probstfield JL, Anderson T, Chaitman BR, Desvignes‐Nickens P, Koprowicz K, McBride R, Teo K, Weintraub W. Niacin in patients with low HDL cholesterol levels receiving intensive statin therapy. N Engl J Med. 2011;365:2255–2267. DOI: 10.1056/NEJMoa1107579.
    1. Lincoff AM, Nicholls SJ, Riesmeyer JS, Barter PJ, Brewer HB, Fox KAA, Gibson CM, Granger C, Menon V, Montalescot G, et al. Evacetrapib and cardiovascular outcomes in high‐risk vascular disease. N Engl J Med. 2017;376:1933–1942. DOI: 10.1056/NEJMoa1609581.
    1. Schwartz GG, Olsson AG, Abt M, Ballantyne CM, Barter PJ, Brumm J, Chaitman BR, Holme IM, Kallend D, Leiter LA, et al. Effects of dalcetrapib in patients with a recent acute coronary syndrome. N Engl J Med. 2012;367:2089–2099. DOI: 10.1056/NEJMoa1206797.
    1. Group HT‐RC , Bowman L, Hopewell JC, Chen F, Wallendszus K, Stevens W, Collins R, Wiviott SD, Cannon CP, Braunwald E, Sammons E, et al. Effects of anacetrapib in ptients with atherosclerotic vascular disease. N Engl J Med. 2017;377:1217–1227. DOI: 10.1056/NEJMoa1706444.
    1. Nicholls SJ, Puri R, Ballantyne CM, Jukema JW, Kastelein JJP, Koenig W, Wright RS, Kallend D, Wijngaard P, Borgman M, et al. Effect of infusion of high‐density lipoprotein mimetic containing recombinant apolipoprotein A‐I Milano on coronary disease in patients with an acute coronary syndrome in the MILANO‐PILOT trial: a randomized clinical trial. JAMA Cardiol. 2018;3:806–814. DOI: 10.1001/jamacardio.2018.2112.
    1. Tardif J‐C, Ballantyne CM, Barter P, Dasseux J‐L, Fayad ZA, Guertin M‐C, Kastelein JJP, Keyserling C, Klepp H, Koenig W, et al. Effects of the high‐density lipoprotein mimetic agent CER‐001 on coronary atherosclerosis in patients with acute coronary syndromes: a randomized trial. Eur Heart J. 2014;35:3277–3286. DOI: 10.1093/eurheartj/ehu171.
    1. Brousseau ME, Diffenderfer MR, Millar JS, Nartsupha C, Asztalos BF, Welty FK, Wolfe ML, Rudling M, Björkhem I, Angelin BO, et al. Effects of cholesteryl ester transfer protein inhibition on high‐density lipoprotein subspecies, apolipoprotein A‐I metabolism, and fecal sterol excretion. Arterioscler Thromb Vasc Biol. 2005;25:1057–1064. DOI: 10.1161/01.ATV.0000161928.16334.dd.
    1. Kempen HJ, Gomaraschi M, Simonelli S, Calabresi L, Moerland M, Otvos J, Jeyarajah E, Kallend D, Wijngaard PLJ. Persistent changes in lipoprotein lipids after a single infusion of ascending doses of MDCO‐216 (apoA‐IMilano/POPC) in healthy volunteers and stable coronary artery disease patients. Atherosclerosis. 2016;255:17–24. DOI: 10.1016/j.atherosclerosis.2016.10.042.
    1. Yamashita S, Matsuzawa Y. Re‐evaluation of cholesteryl ester transfer protein function in atherosclerosis based upon genetics and pharmacological manipulation. Curr Opin Lipidol. 2016;27:459–472. DOI: 10.1097/MOL.0000000000000332.
    1. Glomset JA. The plasma lecithins:cholesterol acyltransferase reaction. J Lipid Res. 1968;9:155–167.
    1. Rosenson RS, Brewer HB Jr, Davidson WS, Fayad ZA, Fuster V, Goldstein J, Hellerstein M, Jiang X‐C, Phillips MC, Rader DJ, et al. Cholesterol efflux and atheroprotection: advancing the concept of reverse cholesterol transport. Circulation. 2012;125:1905–1919. DOI: 10.1161/CIRCULATIONAHA.111.066589.
    1. Shamburek RD, Bakker‐Arkema R, Auerbach BJ, Krause BR, Homan R, Amar MJ, Freeman LA, Remaley AT. Familial lecithin:cholesterol acyltransferase deficiency: first‐in‐human treatment with enzyme replacement. J Clin Lipidol. 2016;10:356–367. DOI: 10.1016/j.jacl.2015.12.007.
    1. Shamburek RD, Bakker‐Arkema R, Shamburek AM, Freeman LA, Amar MJ, Auerbach B, Krause BR, Homan R, Adelman SJ, Collins HL, et al. Safety and tolerability of ACP‐501, a recombinant human lecithin: cholesterol acyltransferase, in a phase 1 single‐dose escalation study. Circ Res. 2016;118:73–82. DOI: 10.1161/CIRCRESAHA.115.306223.
    1. Veng‐Pedersen P. Theorems and implications of a model independent elimination/distribution function decomposition of linear and some nonlinear drug dispositions. I. Derivations and theoretical analysis. J Pharmacokinet Biopharm. 1984;12:627–648. DOI: 10.1007/BF01059557.
    1. Stone NJ, Robinson JG, Lichtenstein AH, Bairey Merz CN, Blum CB, Eckel RH, Goldberg AC, Gordon D, Levy D, Lloyd‐Jones DM, et al. 2013 ACC/AHA guideline on the treatment of blood cholesterol to reduce atherosclerotic cardiovascular risk in adults: a report of the American College of Cardiology/American Heart Association Task Force on Practice Guidelines. Circulation. 2014;129:S1–S45. DOI: 10.1161/01.cir.0000437738.63853.7a.
    1. Schwartz CC, VandenBroek JM, Cooper PS. Lipoprotein cholesteryl ester production, transfer, and output in vivo in humans. J Lipid Res. 2004;45:1594–1607. DOI: 10.1194/jlr.M300511-JLR200.
    1. Rohatgi A, Khera A, Berry JD, Givens EG, Ayers CR, Wedin KE, Neeland IJ, Yuhanna IS, Rader DR, de Lemos JA, et al. HDL cholesterol efflux capacity and incident cardiovascular events. N Engl J Med. 2014;371:2383–2393. DOI: 10.1056/NEJMoa1409065.
    1. Nicholls SJ, Ruotolo G, Brewer HB, Kane JP, Wang MD, Krueger KA, Adelman SJ, Nissen SE, Rader DJ. Cholesterol efflux capacity and pre‐beta‐1 HDL concentrations are increased in dyslipidemic patients treated with evacetrapib. J Am Coll Cardiol. 2015;66:2201–2210. DOI: 10.1016/j.jacc.2015.09.013.
    1. Ballantyne CM, Miller M, Niesor EJ, Burgess T, Kallend D, Stein EA. Effect of dalcetrapib plus pravastatin on lipoprotein metabolism and high‐density lipoprotein composition and function in dyslipidemic patients: results of a phase IIb dose‐ranging study. Am Heart J. 2012;163:515–521, 521.e1–3. DOI: 10.1016/j.ahj.2011.11.017.
    1. Tardif J‐C, Rhainds D, Brodeur M, Feroz Zada Y, Fouodjio R, Provost S, Boulé M, Alem S, Grégoire JC, L’Allier PL, et al. Genotype‐dependent effects of dalcetrapib on cholesterol efflux and inflammation: concordance with clinical outcomes. Circ Cardiovasc Genet. 2016;9:340–348. DOI: 10.1161/CIRCGENETICS.116.001405.
    1. Norum KR, Remaley AT, Miettinen HE, Strøm EH, Balbo BEP, Sampaio CATL, Wiig I, Kuivenhoven JA, Calabresi L, Tesmer JJ, et al. Lecithin:cholesterol acyltransferase: symposium on 50 years of biomedical research from its discovery to latest findings. J Lipid Res. 2020;61:1142–1149. DOI: 10.1194/jlr.S120000720.
    1. Hoeg JM, Santamarina‐Fojo S, Berard AM, Cornhill JF, Herderick EE, Feldman SH, Haudenschild CC, Vaisman BL, Hoyt RF Jr, Demosky SJ Jr, et al. Overexpression of lecithin:cholesterol acyltransferase in transgenic rabbits prevents diet‐induced atherosclerosis. Proc Natl Acad Sci USA. 1996;93:11448–11453. DOI: 10.1073/pnas.93.21.11448.
    1. Amar MJ, Shamburek RD, Vaisman B, Knapper CL, Foger B, Hoyt RF Jr, Santamarina‐Fojo S, Brewer HB Jr, Remaley AT. Adenoviral expression of human lecithin‐cholesterol acyltransferase in nonhuman primates leads to an antiatherogenic lipoprotein phenotype by increasing high‐density lipoprotein and lowering low‐density lipoprotein. Metabolism. 2009;58:568–575. DOI: 10.1016/j.metabol.2008.11.019.
    1. Walldius G, Jungner I. The apoB/apoA‐I ratio: a strong, new risk factor for cardiovascular disease and a target for lipid‐lowering therapy—a review of the evidence. J Intern Med. 2006;259:493–519. DOI: 10.1111/j.1365-2796.2006.01643.x.
    1. Nicholls SJ, Andrews J, Kastelein JJP, Merkely B, Nissen SE, Ray KK, Schwartz GG, Worthley SG, Keyserling C, Dasseux JL, et al. Effect of serial infusions of CER‐001, a pre‐beta high‐density lipoprotein mimetic, on coronary atherosclerosis in patients following acute coronary syndromes in the CER‐001 atherosclerosis regression acute coronary syndrome trial: a randomized clinical trial. JAMA Cardiol. 2018;3:815–822. DOI: 10.1001/jamacardio.2018.2121.
    1. Kempen HJ, Gomaraschi M, Bellibas SE, Plassmann S, Zerler B, Collins HL, Adelman SJ, Calabresi L, Wijngaard PL. Effect of repeated apoA‐IMilano/POPC infusion on lipids, (apo)lipoproteins, and serum cholesterol efflux capacity in cynomolgus monkeys. J Lipid Res. 2013;54:2341–2353. DOI: 10.1194/jlr.M033779.
    1. Rye KA, Hime NJ, Barter PJ. The influence of sphingomyelin on the structure and function of reconstituted high density lipoproteins. J Biol Chem. 1996;271:4243–4250. DOI: 10.1074/jbc.271.8.4243.
    1. Gordts SC, Muthuramu I, Nefyodova E, Jacobs F, Van Craeyveld E, De Geest B. Beneficial effects of selective HDL‐raising gene transfer on survival, cardiac remodelling and cardiac function after myocardial infarction in mice. Gene Ther. 2013;20:1053–1061. DOI: 10.1038/gt.2013.30.
    1. Heywood SE, Richart AL, Henstridge DC, Alt K, Kiriazis H, Zammit C, Carey AL, Kammoun HL, Delbridge LM, Reddy M, et al. High‐density lipoprotein delivered after myocardial infarction increases cardiac glucose uptake and function in mice. Sci Transl Med. 2017;9:eaam6084. DOI: 10.1126/scitranslmed.aam6084.
    1. Marchesi M, Booth EA, Davis T, Bisgaier CL, Lucchesi BR. Apolipoprotein A‐IMilano and 1‐palmitoyl‐2‐oleoyl phosphatidylcholine complex (ETC‐216) protects the in vivo rabbit heart from regional ischemia‐reperfusion injury. J Pharmacol Exp Ther. 2004;311:1023–1031. DOI: 10.1124/jpet.104.070789.
    1. Theilmeier G, Schmidt C, Herrmann J, Keul P, Schafers M, Herrgott I, Mersmann J, Larmann J, Hermann S, Stypmann J, et al. High‐density lipoproteins and their constituent, sphingosine‐1‐phosphate, directly protect the heart against ischemia/reperfusion injury in vivo via the S1P3 lysophospholipid receptor. Circulation. 2006;114:1403–1409. DOI: 10.1161/CIRCULATIONAHA.105.607135.
    1. Wang TD, Wu CC, Chen WJ, Lee CM, Chen MF, Liau CS, Sung FC, Lee YT. Dyslipidemias have a detrimental effect on left ventricular systolic function in patients with a first acute myocardial infarction. Am J Cardiol. 1998;81:531–537. DOI: 10.1016/S0002-9149(97)00974-0.
    1. Kalakech H, Hibert P, Prunier‐Mirebeau D, Tamareille S, Letournel F, Macchi L, Pinet F, Furber A, Prunier F. RISK and SAFE signaling pathway involvement in apolipoprotein A‐I‐induced cardioprotection. PLoS One. 2014;9:e107950. DOI: 10.1371/journal.pone.0107950.
    1. Ansell BJ, Fonarow GC, Fogelman AM. The paradox of dysfunctional high‐density lipoprotein. Curr Opin Lipidol. 2007;18:427–434. DOI: 10.1097/MOL.0b013e3282364a17.
    1. Ansell BJ, Navab M, Hama S, Kamranpour N, Fonarow G, Hough G, Rahmani S, Mottahedeh R, Dave R, Reddy ST, et al. Inflammatory/antiinflammatory properties of high‐density lipoprotein distinguish patients from control subjects better than high‐density lipoprotein cholesterol levels and are favorably affected by simvastatin treatment. Circulation. 2003;108:2751–2756. DOI: 10.1161/01.CIR.0000103624.14436.4B.
    1. Ossoli A, Simonelli S, Varrenti M, Morici N, Oliva F, Stucchi M, Gomaraschi M, Strazzella A, Arnaboldi L, Thomas MJ, et al. Recombinant LCAT (lecithin:cholesterol acyltransferase) rescues defective HDL (high‐density lipoprotein)‐mediated endothelial protection in acute coronary syndrome. Arterioscler Thromb Vasc Biol. 2019;39:915–924. DOI: 10.1161/ATVBAHA.118.311987.
    1. Shao B, Tang C, Sinha A, Mayer PS, Davenport GD, Brot N, Oda MN, Zhao XQ, Heinecke JW. Humans with atherosclerosis have impaired ABCA1 cholesterol efflux and enhanced high‐density lipoprotein oxidation by myeloperoxidase. Circ Res. 2014;114:1733–1742. DOI: 10.1161/CIRCRESAHA.114.303454.
    1. Navab M, Reddy ST, Van Lenten BJ, Anantharamaiah GM, Fogelman AM. The role of dysfunctional HDL in atherosclerosis. J Lipid Res. 2009;50(suppl):S145–S149. DOI: 10.1194/jlr.R800036-JLR200.
    1. Monette JS, Hutchins PM, Ronsein GE, Wimberger J, Irwin AD, Tang C, Sara JD, Shao B, Vaisar T, Lerman A, et al. Patients with coronary endothelial dysfunction have impaired cholesterol efflux capacity and reduced HDL particle concentration. Circ Res. 2016;119:83–90. DOI: 10.1161/CIRCRESAHA.116.308357.
    1. Bonaca MP, George RT, Morrow DA, Bergmark BA, Park J‐G, Abuhatzira L, Vavere AL, Karathanasis SK, Jin C, She D, et al. Recombinant human Lecithin‐Cholesterol acyltransferase in patients with atherosclerosis: phase 2a primary results and phase 2b design. Eur Heart J Cardiovasc Pharmacother. 2021:pvab001. Jan 25 [epub ahead of print]. DOI: 10.1093/ehjcvp/pvab001.

Source: PubMed

3
订阅