Anti-interleukin-1 treatment in patients with rheumatoid arthritis and type 2 diabetes (TRACK): A multicentre, open-label, randomised controlled trial

Piero Ruscitti, Francesco Masedu, Saverio Alvaro, Paolo Airò, Norma Battafarano, Luca Cantarini, Francesco Paolo Cantatore, Giorgio Carlino, Virginia D'Abrosca, Micol Frassi, Bruno Frediani, Daniela Iacono, Vasiliki Liakouli, Roberta Maggio, Rita Mulè, Ilenia Pantano, Immacolata Prevete, Luigi Sinigaglia, Marco Valenti, Ombretta Viapiana, Paola Cipriani, Roberto Giacomelli, Piero Ruscitti, Francesco Masedu, Saverio Alvaro, Paolo Airò, Norma Battafarano, Luca Cantarini, Francesco Paolo Cantatore, Giorgio Carlino, Virginia D'Abrosca, Micol Frassi, Bruno Frediani, Daniela Iacono, Vasiliki Liakouli, Roberta Maggio, Rita Mulè, Ilenia Pantano, Immacolata Prevete, Luigi Sinigaglia, Marco Valenti, Ombretta Viapiana, Paola Cipriani, Roberto Giacomelli

Abstract

Background: The inflammatory contribution to type 2 diabetes (T2D) has suggested new therapeutic targets using biologic drugs designed for rheumatoid arthritis (RA). On this basis, we aimed at investigating whether interleukin-1 (IL-1) inhibition with anakinra, a recombinant human IL-1 receptor antagonist, could improve both glycaemic and inflammatory parameters in participants with RA and T2D compared with tumour necrosis factor (TNF) inhibitors (TNFis).

Methods and findings: This study, designed as a multicentre, open-label, randomised controlled trial, enrolled participants, followed up for 6 months, with RA and T2D in 12 Italian rheumatologic units between 2013 and 2016. Participants were randomised to anakinra or to a TNFi (i.e., adalimumab, certolizumab pegol, etanercept, infliximab, or golimumab), and the primary end point was the change in percentage of glycated haemoglobin (HbA1c%) (EudraCT: 2012-005370-62 ClinicalTrial.gov: NCT02236481). In total, 41 participants with RA and T2D were randomised, and 39 eligible participants were treated (age 62.72 ± 9.97 years, 74.4% female sex). The majority of participants had seropositive RA disease (rheumatoid factor and/or anticyclic citrullinated peptide antibody [ACPA] 70.2%) with active disease (Disease Activity Score-28 [DAS28]: 5.54 ± 1.03; C-reactive protein 11.84 ± 9.67 mg/L, respectively). All participants had T2D (HbA1c%: 7.77 ± 0.70, fasting plasma glucose: 139.13 ± 42.17 mg). When all the enrolled participants reached 6 months of follow-up, the important crude difference in the main end point, confirmed by an unplanned ad interim analysis showing the significant effects of anakinra, which were not observed in the other group, led to the study being stopped for early benefit. Participants in the anakinra group had a significant reduction of HbA1c%, in an unadjusted linear mixed model, after 3 months (β: -0.85, p < 0.001, 95% CI -1.28 to -0.42) and 6 months (β: -1.05, p < 0.001, 95% CI -1.50 to -0.59). Similar results were observed adjusting the model for relevant RA and T2D clinical confounders (male sex, age, ACPA positivity, use of corticosteroids, RA duration, T2D duration, use of oral antidiabetic drug, body mass index [BMI]) after 3 months (β: -1.04, p < 0.001, 95% CI -1.52 to -0.55) and 6 months (β: -1.24, p < 0.001, 95% CI -1.75 to -0.72). Participants in the TNFi group had a nonsignificant slight decrease of HbA1c%. Assuming the success threshold to be HbA1c% ≤ 7, we considered an absolute risk reduction (ARR) = 0.42 (experimental event rate = 0.54, control event rate = 0.12); thus, we estimated, rounding up, a number needed to treat (NNT) = 3. Concerning RA, a progressive reduction of disease activity was observed in both groups. No severe adverse events, hypoglycaemic episodes, or deaths were observed. Urticarial lesions at the injection site led to discontinuation in 4 (18%) anakinra-treated participants. Additionally, we observed nonsevere infections, including influenza, nasopharyngitis, upper respiratory tract infection, urinary tract infection, and diarrhoea in both groups. Our study has some limitations, including open-label design and previously unplanned ad interim analysis, small size, lack of some laboratory evaluations, and ongoing use of other drugs.

Conclusions: In this study, we observed an apparent benefit of IL-1 inhibition in participants with RA and T2D, reaching the therapeutic targets of both diseases. Our results suggest the concept that IL-1 inhibition may be considered a targeted treatment for RA and T2D.

Trial registration: The trial is registered with EU Clinical Trials Register, EudraCT Number: 2012-005370-62 and with ClinicalTrial.gov, number NCT02236481.

Conflict of interest statement

The authors have declared that no competing interests exist for this work.

Figures

Fig 1. Trial profile.
Fig 1. Trial profile.
Participants were recruited from June 2013 to March 2016 and were randomised to either once-daily recombinant human interleukin-1-receptor antagonist (100 mg of anakinra) by daily subcutaneous self-administration or TNFi administered according to relevant data sheets. TNFi, tumour necrosis factor inhibitor.
Fig 2. Measures of glycaemic control and…
Fig 2. Measures of glycaemic control and bodyweight.
Metabolic measures of glycaemic control at baseline (T0) and after 3 (T3) and 6 (T6) months of treatment with anakinra or TNFi. (A) HbA1c%. T0: anakinra group (7.73% ± 0.67) versus TNFi group (7.83% ± 0.76); T3: anakinra group (6.95% ± 0.61) versus TNFi group (7.63% ± 0.68), p = 0.0038; T6: anakinra group (6.70% ± 0.67) versus TNFi group (7.64% ± 0.65), p < 0.001. (B) FPG. T0: anakinra group (139.05 ± 50.09 mg/dL) versus TNFi group (139.25 ± 29.55 mg/dL); T3: anakinra group (109.78 ± 30.58 mg/dL) versus TNFi group (133.06 ± 27.72 mg/dL), p = 0.027; T6: anakinra group (100.81 ± 11.11 mg/dL) versus TNFi group (140.93 ± 39.45 mg/dL), p < 0.001. FPG, fasting plasma glucose; HbA1c%, percentage of glycated haemoglobin; TNFi, tumour necrosis factor inhibitor.
Fig 3. Measures of rheumatoid arthritis disease…
Fig 3. Measures of rheumatoid arthritis disease activity.
Measures of rheumatoid arthritis disease activity at baseline (T0) and after 3 (T3) and 6 months (T6) of treatment with anakinra or TNFi. (A) DAS28. T0: anakinra group (5.42 ± 1.18) versus TNFi group (5.70 ± 0.80); T3: anakinra group (2.95 ± 1.58) versus TNFi group (3.94 ± 1.01), p = 0.039, T6: anakinra group (2.70 ± 1.16) versus TNFi group (3.58 ± 1.45), p = 0.08. (B) SDAI. T0: anakinra group (34.98 ± 25.18) versus TNFi group (35.86 ± 3.47); T3: anakinra group (17.70 ± 10.53) versus TNFi group (18.69 ± 29.55), p = 0. 90; T6: anakinra group (7.89 ± 9.23) versus TNFi group (14.93 ± 9.92), p = 0.0048. (C) PGA. T0: anakinra group (61.90 ± 19.17) versus TNFi group (62.00 ± 17.81); T3: anakinra group (22.21 ± 21.86) versus TNFi group (30.13 ± 19.66), p = 0.27; T6: anakinra group (18.53 ± 23.53) versus TNFi group (25.97 ± 19.99), p = 0.45. (D) VAS of pain. T0: anakinra group (66.86 ± 29.46) versus TNFi group (68.94 ± 22.86); T3: anakinra group (35.37 ± 23.74) versus TNFi group: (44.00 ± 21.98), p = 0.28; T6: anakinra group (27.47 ± 21.67) versus TNFi group (26.46 ± 28.38), p = 0.24. DAS28, Disease Activity Score-28; PGA, physician global assessment; SDAI, simplified disease activity index; TNFi, tumour necrosis factor inhibitor; VAS, visual analogue scale.

References

    1. Singh JA, Christensen R, Wells GA, Suarez-Almazor ME, Buchbinder R, Lopez-Olivo MA, et al. Biologics for rheumatoid arthritis: an overview of Cochrane reviews. Cochrane Database Syst Rev. 2009;(4): CD007848 10.1002/14651858.CD007848.pub2
    1. Nurmohamed MT, Heslinga M, Kitas GD. Cardiovascular comorbidity in rheumatic diseases. Nat Rev Rheumatol. 2015;11: 693–704. 10.1038/nrrheum.2015.112
    1. Ruscitti P, Ursini F, Cipriani P, Ciccia F, Liakouli V, Carubbi F, et al. Prevalence of type 2 diabetes and impaired fasting glucose in patients affected by rheumatoid arthritis: Results from a cross-sectional study. Medicine (Baltimore). 2017;96: e7896.
    1. Donath MY. Targeting inflammation in the treatment of type 2 diabetes: time to start. Nat Rev Drug Discov. 2014;13: 465–476. 10.1038/nrd4275
    1. Berchtold LA, Prause M, Størling J, Mandrup-Poulsen T. Cytokines and Pancreatic β-Cell Apoptosis. Adv Clin Chem. 2016;75: 99–158. 10.1016/bs.acc.2016.02.001
    1. Giacomelli R, Ruscitti P, Alvaro S, Ciccia F, Liakouli V, Di Benedetto P, et al. IL-1β at the crossroad between rheumatoid arthritis and type 2 diabetes: may we kill two birds with one stone? Expert Rev Clin Immunol. 2016;12: 849–855. 10.1586/1744666X.2016.1168293
    1. Viswanathan M, Kahwati LC, Golin CE, Blalock SJ, Coker-Schwimmer E, Posey R, et al. Medication therapy management interventions in outpatient settings: a systematic review and meta-analysis. JAMA Intern Med. 2015;175: 76–87. 10.1001/jamainternmed.2014.5841
    1. Pincus T, Sokka T. Should contemporary rheumatoid arthritis clinical trials be more like standard patient care and vice versa? Ann Rheum Dis. 2004;63 Suppl 2: ii32–ii9.
    1. Duru N, van der Goes MC, Jacobs JW, Andrews T, Boers M, Buttgereit F, et al. EULAR evidence-based and consensus-based recommendations on the management of medium to high-dose glucocorticoid therapy in rheumatic diseases. Ann Rheum Dis. 2013;72: 1905–1913. 10.1136/annrheumdis-2013-203249
    1. Larsen CM, Faulenbach M, Vaag A, Vølund A, Ehses JA, Seifert B, et al. Interleukin-1-receptor antagonist in type 2 diabetes mellitus. N Engl J Med. 2007;356: 1517–1526. 10.1056/NEJMoa065213
    1. Mehta CR, Tsiatis AA. Flexible sample size considerations using information-based interim monitoring. Drug Information Journal. 2001;35: 1095–1112.
    1. Lièvre M, Ménard J, Bruckert E, Cogneau J, Delahaye F, Giral P, et al. Premature discontinuation of clinical trial for reasons not related to efficacy, safety, or feasibility. BMJ. 2001;322: 603–605. 10.1136/bmj.322.7286.603
    1. Pocock SJ. When to stop a clinical trial. BMJ. 1992;305: 235–240. 10.1136/bmj.305.6847.235
    1. Montori VM, Devereaux PJ, Adhikari NK, Burns KE, Eggert CH, Briel M, et al. Randomized trials stopped early for benefit: a systematic review. JAMA. 2005;294: 2203–2209. 10.1001/jama.294.17.2203
    1. Nikfar S, Saiyarsarai P, Tigabu BM, Abdollahi M. Efficacy and safety of interleukin-1 antagonists in rheumatoid arthritis: a systematic review and meta-analysis. Rheumatol Int. 2018;38: 1363–1383. 10.1007/s00296-018-4041-1
    1. Larsen CM, Faulenbach M, Vaag A, Ehses JA, Donath MY, Mandrup-Poulsen T. Sustained effects of interleukin-1 receptor antagonist treatment in type 2 diabetes. Diabetes Care. 2009;32: 1663–1668. 10.2337/dc09-0533
    1. Moran A, Bundy B, Becker DJ, DiMeglio LA, Gitelman SE, Goland R, et al. Interleukin-1 antagonism in type 1 diabetes of recent onset: two multicentre, randomised, double-blind, placebo-controlled trials. Lancet. 2013;381: 1905–1915. 10.1016/S0140-6736(13)60023-9
    1. Schumann DM, Maedler K, Franklin I, Konrad D, Størling J, Böni-Schnetzler M, et al. The Fas pathway is involved in pancreatic beta cell secretory function. Proc Natl Acad Sci U S A. 2007;104: 2861–2866. 10.1073/pnas.0611487104
    1. Ruscitti P, Cipriani P, Di Benedetto P, Liakouli V, Berardicurti O, Carubbi F, et al. Monocytes from patients with rheumatoid arthritis and type 2 diabetes mellitus display an increased production of interleukin (IL)-1beta via the nucleotide-binding domain and leucine-rich repeat containing family pyrin 3(NLRP3)-inflammasome activation: a possible implication for therapeutic decision in these patients. Clin Exp Immunol. 2015;182: 35–44. 10.1111/cei.12667
    1. Paquot N, Castillo MJ, Lefèbvre PJ, Scheen AJ. No increased insulin sensitivity after a single intravenous administration of a recombinant human tumor necrosis factor receptor: Fc fusion protein in obese insulin-resistant patients. J Clin Endocrinol Metab. 2000;85: 1316–1319. 10.1210/jcem.85.3.6417
    1. Di Rocco P, Manco M, Rosa G, Greco AV, Mingrone G. Lowered tumor necrosis factor receptors, but not increased insulin sensitivity, with infliximab. Obes Res. 2004;12: 734–739. 10.1038/oby.2004.86
    1. Gonzalez-Gay MA, Gonzalez-Juanatey C, Vazquez-Rodriguez TR, Miranda-Filloy JA, Llorca J. Insulin resistance in rheumatoid arthritis: the impact of the anti-TNF-alpha therapy. Ann N Y Acad Sci. 2010;1193: 153–159. 10.1111/j.1749-6632.2009.05287.x
    1. Bassler D, Briel M, Montori VM, Lane M, Lane M, Glasziou P, Zhou Q, et al. Stopping randomized trials early for benefit and estimation of treatment effects: systematic review and meta-regression analysis. JAMA. 2010;303: 1180–1187. 10.1001/jama.2010.310
    1. Declaration of Helsinki IV, 41st World Medical Assembly, Hong Kong, September 1989 In: The Nazi doctors and the Nuremberg code: human rights in human experimentation. Annas GJ, Grodin MA, eds. New York: Oxford University Press; 1992. p. 339–42.
    1. Peto R, Pike MC, Armitage P, Breslow NE, Cox DR, Howard SV, et al. Design and analysis of randomized clinical trials requiring prolonged observation of each patient. I. Introduction and design. Br J Cancer. 1976; 34: 585–612. 10.1038/bjc.1976.220
    1. Ruscitti P, Ursini F, Cipriani P, Liakouli V, Carubbi F, Berardicurti O, et al. Poor clinical response in rheumatoid arthritis is the main risk factor for diabetes development in the short-term: A 1-year, single-centre, longitudinal study. PLoS ONE. 2017;12: e0181203 10.1371/journal.pone.0181203
    1. Baghdadi LR, Woodman RJ, Shanahan EM, Mangoni AA. The impact of traditional cardiovascular risk factors on cardiovascular outcomes in patients with rheumatoid arthritis: a systematic review and meta- analysis. PLoS ONE. 2015;10: e0117952 10.1371/journal.pone.0117952
    1. Peters MJ, van Halm VP, Voskuyl AE, Smulders YM, Boers M, Lems WF, et al. Does rheumatoid arthritis equal diabetes mellitus as an independent risk factor for cardiovascular disease? A prospective study. Arthritis Rheum. 2009;61: 1571–1579. 10.1002/art.24836
    1. Ray KK, Seshasai SR, Wijesuriya S, Sivakumaran R, Nethercott S, Preiss D, et al. Effect of intensive control of glucose on cardiovascular outcomes and death in patients with diabetes mellitus: a meta-analysis of randomised controlled trials. Lancet. 2009;373: 1765–1772. 10.1016/S0140-6736(09)60697-8
    1. Ridker PM, Everett BM, Thuren T, MacFadyen JG, Chang WH, Ballantyne C, et al. Antiinflammatory therapy with canakinumab for atherosclerotic disease. N Engl J Med. 2017;377: 1119–1131. 10.1056/NEJMoa1707914
    1. Tank ND, Karelia BN, Vegada BN. Biological Response Modifiers in Rheumatoid Arthritis: Systematic Review and Meta-analysis of Safety. J Pharmacol Pharmacother. 2017; 8: 92–105. 10.4103/jpp.JPP_155_16
    1. Michaud TL, Rho YH, Shamliyan T, Kuntz KM, Choi HK. The comparative safety of tumor necrosis factor inhibitors in rheumatoid arthritis: a meta-analysis update of 44 trials. Am J Med. 2014;127: 1208–1232. 10.1016/j.amjmed.2014.06.012
    1. Liebner R, Meyer M, Hey T, Winter G, Besheer A. Head to head comparison of the formulation and stability of concentrated solutions of HESylated versus PEGylated anakinra. J Pharm Sci. 2015;104: 515–526. 10.1002/jps.24253
    1. Ikonomidis I, Lekakis JP, Nikolaou M, Paraskevaidis I, Andreadou I, Kaplanoglou T, et al. Inhibition of interleukin-1 by anakinra improves vascular and left ventricular function in patients with rheumatoid arthritis. Circulation. 2008;117: 2662–2669. 10.1161/CIRCULATIONAHA.107.731877
    1. van Poppel PC, van Asseldonk EJ, Holst JJ, Vilsboll T, Netea MG, Tack CJ. The interleukin-1 receptor antagonist anakinra improves first-phase insulin secretion and insulinogenic index in subjects with impaired glucose tolerance. Diabetes Obes Metab. 2014; 16: 1269–1273. 10.1111/dom.12357
    1. Donath MY, Shoelson SE. Type 2 diabetes as an inflammatory disease. Nat Rev Immunol. 2011;11: 98–107. 10.1038/nri2925
    1. de Rotte MC, de Jong PH, den Boer E, Pluijm SM, Özcan B, Weel AE, et al. Effect of methotrexate use and erythrocyte methotrexate polyglutamate on glycosylated hemoglobin in rheumatoid arthritis. Arthritis Rheumatol. 2014;66: 2026–2036. 10.1002/art.38652
    1. den Uyl D, van Raalte DH, Nurmohamed MT, Lems WF, Bijlsma JW, Hoes JN, et al. Metabolic effects of high-dose prednisolone treatment in early rheumatoid arthritis: balance between diabetogenic effects and inflammation reduction. Arthritis Rheum. 2012;64: 639–646. 10.1002/art.33378
    1. Hoes JN, van der Goes MC, van Raalte DH, van der Zijl NJ, den Uyl D, Lems WF, et al. Glucose tolerance, insulin sensitivity and β-cell function in patients with rheumatoid arthritis treated with or without low-to-medium dose glucocorticoids. Ann Rheum Dis. 2011;70: 1887–1894. 10.1136/ard.2011.151464
    1. van Sijl AM, Boers M, Voskuyl AE, Nurmohamed MT. Confounding by indication probably distorts the relationship between steroid use and cardiovascular disease in rheumatoid arthritis: results from a prospective cohort study. PLoS ONE. 2014;9: e87965 10.1371/journal.pone.0087965
    1. Lillegraven S, Greenberg JD, Reed GW, Saunders K, Curtis JR, Harrold L, et al. Immunosuppressive treatment and the risk of diabetes in rheumatoid arthritis. PLoS ONE. 2019;14: e0210459 10.1371/journal.pone.0210459
    1. Schork NJ. Personalized medicine: Time for one-person trials. Nature. 2015; 520: 609–611. 10.1038/520609a
    1. Bluett J, Barton A. Precision Medicine in Rheumatoid Arthritis. Rheum Dis Clin North Am. 2017;43: 377–387. 10.1016/j.rdc.2017.04.008
    1. Cuppen BV, Welsing PM, Sprengers JJ, Bijlsma JW, Marijnissen AC, van Laar JM, et al. Personalized biological treatment for rheumatoid arthritis: a systematic review with a focus on clinical applicability. Rheumatology (Oxford). 2016;55: 826–839. 10.1093/rheumatology/kev421
    1. Burmester GR, Pope JE. Novel treatment strategies in rheumatoid arthritis. Lancet. 2017;389: 2338–2348. 10.1016/S0140-6736(17)31491-5
    1. Donath MY. Multiple benefits of targeting inflammation in the treatment of type 2 diabetes. Diabetologia. 2016;59: 679–682. 10.1007/s00125-016-3873-z
    1. Selvin E, Parrinello CM, Daya N, Bergenstal RM. Trends in Insulin Use and Diabetes Control in the U.S.: 1988–1994 and 1999–2012. Diabetes Care. 2016;39: e33–35. 10.2337/dc15-2229
    1. Alten R, Gomez-Reino J, Durez P, Beaulieu A, Sebba A, Krammer G, et al. Efficacy and safety of the human anti-IL-1β monoclonal antibody canakinumab in rheumatoid arthritis: results of a 12-week, Phase II, dose-finding study. BMC Musculoskeletal Disorders. 2011;12: 153 10.1186/1471-2474-12-153
    1. Cavelti-Weder C, Babians-Brunner A, Keller C, Stahel MA, Kurz-Levin M, Zayed H, et al. Effects of gevokizumab on glycemia and inflammatory markers in type 2 diabetes. Diabetes Care. 2012;35: 1654–1662. 10.2337/dc11-2219
    1. Rissanen A, Howard CP, Botha J, Thuren T, Global Investigators. Effect of anti-IL-1β anti-body (canakinumab) on insulin secretion rates in impaired glucose tolerance or type 2 diabetes: results of a randomized, placebo-controlled trial. Diabetes Obes Metab. 2012;14: 1088–1096. 10.1111/j.1463-1326.2012.01637.x

Source: PubMed

3
订阅