3D correction of AIS in braces designed using CAD/CAM and FEM: a randomized controlled trial

Nikita Cobetto, Carl-Éric Aubin, Stefan Parent, Soraya Barchi, Isabelle Turgeon, Hubert Labelle, Nikita Cobetto, Carl-Éric Aubin, Stefan Parent, Soraya Barchi, Isabelle Turgeon, Hubert Labelle

Abstract

Background: Recent studies showed that finite element model (FEM) combined to CAD/CAM improves the design of braces for the conservative treatment of adolescent idiopathic scoliosis (AIS), using 2D measurements from in-brace radiographs. We aim to assess the immediate effectiveness on curve correction in all three planes of braces designed using CAD/CAM and numerical simulation compared to braces designed with CAD/CAM only.

Methods: SRS standardized criteria for bracing were followed to recruit 48 AIS patients who were randomized into two groups. For both groups, 3D reconstructions of the spine and patient's torso, respectively built from bi-planar radiographs and surface topography, were obtained and braces were designed using the CAD/CAM approach. For the test group, 3D reconstructions of the spine and patient's torso were additionally used to generate a personalized FEM to simulate and iteratively improve the brace design with the objective of curve correction maximization in three planes and brace material minimization.

Results: For the control group (CtrlBraces), average Cobb angle prior to bracing was 29° (thoracic, T) and 25° (lumbar, L) with the planes of maximal curvature (PMC) respectively oriented at 63° and 57° on average with respect to the sagittal plane. Average apical axial rotation prior to bracing was 7° (T) and 9° (L). For the test group (FEMBraces), initial Cobb angles were 33° (T) and 28° (L) with the PMC at 68° (T) and 56° (L) and average apical axial rotation prior to bracing at 9° (T and L). On average, FEMBraces were 50% thinner and had 20% less covering surface than CtrlBraces while reducing T and L curves by 47 and 48%, respectively, compared to 25 and 26% for CtrlBraces. FEMBraces corrected apical axial rotation by 46% compared to 30% for CtrlBraces.

Conclusion: The combination of numerical simulation and CAD/CAM approach allowed designing more efficient braces in all three planes, with the advantages of being lighter than standard CAD/CAM braces. Bracing in AIS may be improved in 3D by the use of this simulation platform. This study is ongoing to recruit more cases and to analyze the long-term effect of bracing.

Trial registration: ClinicalTrials.gov, NCT02285621.

Keywords: Computer-aided design/computer-aided manufacturing; Finite element model (FEM); RCT; Scoliosis; Thoraco-lumbo-sacral orthosis.

Figures

Fig. 1
Fig. 1
a Acquisition of the calibrated bi-planar radiographs and view of the corresponding 3D reconstruction of the spine, rib cage, and pelvis. b Top view of the planes of maximal curvature. c Torso 3D geometry following surface topography acquisition. d 3D geometric registration of the spine and torso geometry. e Finite element model of the trunk: vertebrae, intervertebral discs, ribs, sternum, costal cartilages, ligaments, and soft external tissues
Fig. 2
Fig. 2
a Patient’s recruitment and randomization. b CtrlBrace design using the CAD software. c Iterative FEMBrace design using the CAD software and simulation of the FEMBrace installation. d Brace fabrication using a numerically controlled carver
Fig. 3
Fig. 3
Results in the coronal (T and L Cobb angles), sagittal (kyphosis and lordosis), and transverse planes (T and L PMC as well as T and L apical axial rotation) for two typical patients: out of brace initial curve, with the CtrlBrace or with the FEMBrace

References

    1. Nachemson AL, Peterson LE. Effectiveness of treatment with brace in girls who have adolescent idiopathic scoliosis. A prospective, controlled study based on data from the Brace Study of the Scoliosis Research Society. J Bone Joint Surg. 1995;77:815–22. doi: 10.2106/00004623-199506000-00001.
    1. Trobisch P, Suess O, Schwab F. Idiopathic scoliosis. Dtsch Arztebl Int. 2010;107(49):875–83.
    1. Labelle H, Aubin CE, Jackson R, Lenke L, Newton P, Parent S. Seeing the spine in 3D: how will it change what we do? J Pediatr Orthop. 2011;31(1 Suppl):S37–45. doi: 10.1097/BPO.0b013e3181fd8801.
    1. Castro F. Adolescent idiopathic scoliosis, bracing, and the Hueter-Volkmann principle. Spine. 2003;3:182–5.
    1. Weinstein SL, Dolan LA, Wright JG, Dobbs MB. Effects of bracing in adolescents with idiopathic scoliosis. N Engl J Med. 2013;369(16):1512–21. doi: 10.1056/NEJMoa1307337.
    1. Landauer F, Wimmer C, Behensky H. Estimating the final outcome of brace treatment for idiopathic thoracic scoliosis at 6-month follow-up. Pediatric rehabilitation. 2003;6:201–7. doi: 10.1080/13638490310001636817.
    1. Clin J, Aubin CE, Sangole A, Labelle H, Parent S. Correlation between immediate in-brace correction and biomechanical effectiveness of brace treatment in adolescent idiopathic scoliosis. Spine. 2010;35(18):1706–13. doi: 10.1097/BRS.0b013e3181cb46f6.
    1. Nault M, Parent S, Phan P, Roy-Beaudry M, Labelle H, Rivard M. A modified Risser grading system predicts the curve acceleration phase of female adolescent idiopathic scoliosis. J Bone Joint Surg Am. 2010;92:1073–81. doi: 10.2106/JBJS.H.01759.
    1. Lusini M, Donzelli S, Minnella S, Zaina F, Negrini S. Brace treatment is effective in idiopathic scoliosis over 45°: an observational prospective cohort controlled study. Spine J. 2010;14(9):1951–6. doi: 10.1016/j.spinee.2013.11.040.
    1. Brox JI, Lange JE, Gunderson RB, Steen H. Good brace compliance reduced curve progression and surgical rates in patients with idiopathic scoliosis. Eur Spine J. 2012;21:1957–63. doi: 10.1007/s00586-012-2386-9.
    1. Aulisa GO, Giordano M, Falciglia F, et al. Correlation between compliance and brace treatment in juvenile and adolescent idiopathic scoliosis: SOSORT 2014 award winner. Scoliosis. 2014;9:6. doi: 10.1186/1748-7161-9-6.
    1. Courvoisier A, Drevelle X, Vialle R, Dubousset J, Skalli W. 3D analysis of brace treatment in idiopathic scoliosis. Eur Spine J. 2013;22:2449–55. doi: 10.1007/s00586-013-2881-7.
    1. Labelle H, Dansereau J, Bellefleur C, Poitras B. Three-dimensional effect of the Boston brace on the thoracic spine and rib cage. Spine. 1996;21:59–64. doi: 10.1097/00007632-199601010-00013.
    1. Schmitz A, Kandyba J, Koenig R, Jaeger UE, Gieseke J, Schmitt O. A new method of MR total spine imaging for showing the brace effect in scoliosis. J Orthop Sci. 2001;6:316–9. doi: 10.1007/s007760100025.
    1. Sangole AP, Aubin CE, Labelle H, Stokes IA, Lenke LG, Jackson R, Newton P. Three-dimensional classification of thoracic scoliotic curves. Spine. 2009;34:91–9. doi: 10.1097/BRS.0b013e3181877bbb.
    1. Wong MS. A comparison of treatment effectiveness between the CAD/CAM method and the manual method for managing adolescent idiopathic scoliosis. Prosthet Orthot Int. 2005;29(1):105–11. doi: 10.1080/17461550500069547.
    1. Wong MS. Computer-aided design and computer-aided manufacture (CAD/CAM) system for construction of spinal orthosis for patients with adolescent idiopathic scoliosis. Physiother Theory Pract. 2011;27(1):74–9. doi: 10.3109/09593980903269741.
    1. Gignac D, Aubin CE, Dansereau J, Labelle H. Optimization method for 3D bracing correction of scoliosis using a finite element model. Eur Spine J. 2000;9:185–90. doi: 10.1007/s005860000135.
    1. Wynarsky GT, Schultz AB. Optimization of skeletal configuration: studies of scoliosis correction biomechanics. J Biomech. 1991;24(8):721–32. doi: 10.1016/0021-9290(91)90336-L.
    1. Perie D, Aubin CE, Lacroix M, Lafon Y, Labelle H. Biomechanical modelling of orthotic treatment of the scoliotic spine including a detailed representation of the brace-torso interface. Med Biol Eng Comput. 2004;42:339–44. doi: 10.1007/BF02344709.
    1. Perie D, Aubin CE, Petit Y, Labelle H, Dansereau J. Personalized biomechanical simulations of orthotic treatment in idiopathic scoliosis. Clin Biomech. 2004;19:190–5. doi: 10.1016/j.clinbiomech.2003.11.003.
    1. Clin J, Aubin CE, Labelle H. Virtual prototyping of a brace design for the correction of scoliotic deformities. Med Biol Eng Comput. 2007;45:467–73. doi: 10.1007/s11517-007-0171-4.
    1. Clin J, Aubin CE, Parent S, Labelle H. Biomechanical modeling of brace treatment of scoliosis: effects of gravitational loads. Med Biol Eng Comput. 2011;49:743–53. doi: 10.1007/s11517-011-0737-z.
    1. Desbiens-Blais F, Clin J, Parent S, Labelle H, Aubin CE. New brace design combining CAD/CAM and biomechanical simulation for the treatment of adolescent idiopathic scoliosis. Clin Biomech. 2012;27:999–1005. doi: 10.1016/j.clinbiomech.2012.08.006.
    1. Cobetto N, Aubin CE, Clin J, Le May S, Desbiens-Blais F, Labelle H, Parent S. Braces optimized with computer-assisted design and simulations are lighter, comfortable and more efficient than plaster-casted braces for the treatment of adolescent idiopathic scoliosis. Spine Deformity. 2014;2(4):276–84. doi: 10.1016/j.jspd.2014.03.005.
    1. Cobetto N, Aubin CE, Parent S, Clin J, Barchi S, Tirgeon I, Labelle H. Effectiveness of braces designed using computer aided design and manufacturing (CAD/CAM) and finite element simulation compared to CAD/CAM only for the conservative treatment of adolescent idiopathic scoliosis: a prospective randomized controlled trial. Eur Spine J. 2016 [Epub ahead of print].
    1. Richards BS, Bernstein RM, D’Amato CR, Thompson GH. Standardization of criteria for adolescent idiopathic scoliosis brace studies: SRS Committee on Bracing and Nonoperative Management. Spine. 2005;30(18):2068–75. doi: 10.1097/01.brs.0000178819.90239.d0.
    1. Humbert L, De Guise JA, Aubert B, Godbout B, Skalli W. 3D reconstruction of the spine from bi-planar x-rays using parametric models based on transversal and longitudinal inferences. Med Eng Phys. 2009;31:681–7. doi: 10.1016/j.medengphy.2009.01.003.
    1. Sangole A, Aubin CE, Labelle H, Stokes AF, Lenke L, Jackson R, Newton P. Three-dimensional classification of thoracic scoliotic curves. Spine. 2008;34:91–9. doi: 10.1097/BRS.0b013e3181877bbb.
    1. Pomero V, Mitton D, Laporte S, de Guise JA, Skalli W. Fast accurate stereoradiographic 3D-reconstruction of the spine using a combined geometric and statistic model. Clin Biomech. 2004;19(3):240–7. doi: 10.1016/j.clinbiomech.2003.11.014.
    1. Pazos V, Cheriet F, Dansereau J, Ronsky J, Zernicke RF, Labelle H. Reliability of trunk shape measurements based on 3-D surface reconstructions. Eur Spine J. 2007;16:1882–91. doi: 10.1007/s00586-007-0457-0.
    1. Raux S, Kohler R, Garin C, Cunin V, Abelin-Genevois K. Tridimensional trunk surface acquisition for brace manufacturing in idiopathic scoliosis. Eur Spine J. 2014;4:S419–23. doi: 10.1007/s00586-014-3337-4.
    1. Clin J, Aubin CE, Parent S, Labelle H. A biomechanical study of the Charleston brace for the treatment of scoliosis. Spine (Phila Pa 1976) 2010;35(19):E940–7. doi: 10.1097/BRS.0b013e3181c5b5fa.
    1. Aubin C, Descrimes JL, Dansereau J, et al. Geometrical modeling of the spine and the thorax for the biomechanical analysis of scoliotic deformities using the finite element method. Ann Chir. 1995;49:749–61.
    1. Aubin CE, Dansereau J, de Guise JA, Labelle H. A study of biomechanical coupling between spine and rib cage in the treatment by orthosis of scoliosis. Ann Chir. 1996;50:641–50.
    1. Howard A, Wright JG, Hedden D. A comparative study of TLSO, Charleston and Milwaukee braces for idiopathic scoliosis. Spine. 1998;23:2404–11. doi: 10.1097/00007632-199811150-00009.
    1. Aubin CE, Dansereau J, de Guise JA, Labelle H. Rib cage-spine coupling patterns involved in brace treatment of adolescent idiopathic scoliosis. Spine. 1996;22:629–35. doi: 10.1097/00007632-199703150-00010.
    1. Zhang M, Mak A. In vivo friction properties of human skin. Prosthetics Orthot Int. 1999;23:135–41.
    1. Nault ML, Mac-Thiong JM, Roy-Beaudy M, Turgeon I, Deguise J, Labelle H, Parent S. Three-dimensional spinal morphology can differentiate between progressive and non-progressive patients with adolescent idiopathic scoliosis at the initial presentation: a prospective study. Spine. 2014;39:E601–6. doi: 10.1097/BRS.0000000000000284.
    1. Al-Aubaidi Z, Shin EJ, Howard A, Zeller R. Three dimensional analysis of brace biomechanical efficacy for patients with AIS. Eur Spine J. 2013;22(11):2445–8. doi: 10.1007/s00586-013-2921-3.

Source: PubMed

3
订阅