Association of Brain Reward Response With Body Mass Index and Ventral Striatal-Hypothalamic Circuitry Among Young Women With Eating Disorders

Guido K W Frank, Megan E Shott, Joel Stoddard, Skylar Swindle, Tamara L Pryor, Guido K W Frank, Megan E Shott, Joel Stoddard, Skylar Swindle, Tamara L Pryor

Abstract

Importance: Eating disorders are severe psychiatric disorders; however, disease models that cross subtypes and integrate behavior and neurobiologic factors are lacking.

Objective: To assess brain response during unexpected receipt or omission of a salient sweet stimulus across a large sample of individuals with eating disorders and healthy controls and test for evidence of whether this brain response is associated with the ventral striatal-hypothalamic circuitry, which has been associated with food intake control, and whether salient stimulus response and eating disorder related behaviors are associated.

Design, setting, and participants: In this cross-sectional functional brain imaging study, young adults across the eating disorder spectrum were matched with healthy controls at a university brain imaging facility and eating disorder treatment program. During a sucrose taste classic conditioning paradigm, violations of learned associations between conditioned visual and unconditioned taste stimuli evoked the dopamine-related prediction error. Dynamic effective connectivity during expected sweet taste receipt was studied to investigate hierarchical brain activation between food intake relevant brain regions. The study was conducted from June 2014 to November 2019. Data were analyzed from December 2019 to February 2020.

Main outcomes and measures: Prediction error brain reward response across insula and striatum; dynamic effective connectivity between hypothalamus and ventral striatum; and demographic and behavior variables and their correlations with prediction error brain response and connectivity edge coefficients.

Results: Of 317 female participants (197 with eating disorders and 120 healthy controls), the mean (SD) age was 23.8 (5.6) years and mean (SD) body mass index was 20.8 (5.4). Prediction error response was elevated in participants with anorexia nervosa (Wilks λ, 0.843; P = .001) and in participants with eating disorders inversely correlated with body mass index (left nucleus accumbens: r = -0.291; 95% CI, -0.413 to -0.167; P < .001; right dorsal anterior insula: r = -0.228; 95% CI, -0.366 to -0.089; P = .001), eating disorder inventory-3 binge eating tendency (left nucleus accumbens: r = -0.207; 95% CI, -0.333 to -0.073; P = .004; right dorsal anterior insula: r = -0.220; 95% CI, -0.354 to -0.073; P = .002), and trait anxiety (left nucleus accumbens: r = -0.148; 95% CI, -0.288 to -0.003; P = .04; right dorsal anterior insula: r = -0.221; 95% CI, -0.357 to -0.076; P = .002). Ventral striatal to hypothalamus directed connectivity was positively correlated with ventral striatal prediction error in eating disorders (r = 0.189; 95% CI, 0.045-0.324; P = .01) and negatively correlated with feeling out of control after eating (right side: r = -0.328; 95% CI, -0.480 to -0.164; P < .001; left side: r = -0.297; 95% CI, -0.439 to -0.142; P = .001).

Conclusions and relevance: The results of this cross-sectional imaging study support that body mass index modulates prediction error and food intake control circuitry in the brain. Once altered, this circuitry may reinforce eating disorder behaviors when paired with behavioral traits associated with overeating or undereating.

Conflict of interest statement

Conflict of Interest Disclosures: Dr Frank reported grants from National Institute of Mental Health Grant for the study, no conflict of interest during the conduct of the study. Dr Stoddard reported grants from NIMH RO1MH103436 and grants from NIMH K23MH113731 during the conduct of the study. No other disclosures were reported.

Figures

Figure 1.. Effective Connectivity Maps Across Study…
Figure 1.. Effective Connectivity Maps Across Study Groups
The yellow arrow indicates effective dynamic connectivity in opposite directions between ventral striatum and hypothalamus. ACC, anterior cingulate cortex; BA/BLA, basolateral amygdala; CAN, central nucleus of the amygdala; HYP, hypothalamus; L, left; OFC, orbitofrontal cortex; PFC, prefrontal cortex; R, right; SN, substantia nigra; VMP, ventral midbrain/pons.
Figure 2.. Model for Interaction Between Behaviors,…
Figure 2.. Model for Interaction Between Behaviors, Body Mass Index, and Brain Function
The solid lines indicate proposed mechanistic relationships; the broken lines indicate indirect associations. Numeric values report Pearson correlation values. BDI indicates Beck Depression Inventory 2; BMI, body mass index; EDI, Eating Disorder Inventory-3; EEI, Eating Expectancy Inventory; IUS, Intolerance of Uncertainty Scale; PE, prediction error; Sensitivity to Punishment and Sensitivity to Reward Questionnaire; SP, Sensitivity to Punishment subscale; TCI indicates Temperament and Character Inventory–novelty seeking; VS, ventral striatum. aP < .001. bP < .01. Specific values available in eTable 2 in the Supplement. cP < .05. Specific values available in eTable 2 in the Supplement.

References

    1. Crow SJ, Peterson CB, Swanson SA, et al. . Increased mortality in bulimia nervosa and other eating disorders. Am J Psychiatry. 2009;166(12):1342-1346. doi:10.1176/appi.ajp.2009.09020247
    1. American Psychiatric Association . Desk Reference to the Diagnostic Criteria From DSM-5. Washington, DC: American Psychiatric Publishing; 2013.
    1. Kaye WH, Wierenga CE, Bailer UF, Simmons AN, Bischoff-Grethe A. Nothing tastes as good as skinny feels: the neurobiology of anorexia nervosa. Trends Neurosci. 2013;36(2):110-120. doi:10.1016/j.tins.2013.01.003
    1. National Institute of Mental Health . Research domain criteria (RDoC). Accessed May 26, 2021.
    1. Schaefer LM, Steinglass JE. Reward learning through the lens of RDoC: a review of theory, assessment, and empirical findings in the eating disorders. Curr Psychiatry Rep. 2021;23(1):2. doi:10.1007/s11920-020-01213-9
    1. Schultz W. Dopamine reward prediction error coding. Dialogues Clin Neurosci. 2016;18(1):23-32. doi:10.31887/DCNS.2016.18.1/wschultz
    1. O’Doherty JP, Cockburn J, Pauli WM. Learning, reward, and decision making. Annu Rev Psychol. 2017;68:73-100. doi:10.1146/annurev-psych-010416-044216
    1. Fouragnan E, Queirazza F, Retzler C, Mullinger KJ, Philiastides MG. Spatiotemporal neural characterization of prediction error valence and surprise during reward learning in humans. Sci Rep. 2017;7(1):4762. doi:10.1038/s41598-017-04507-w
    1. D’Ardenne K, Lohrenz T, Bartley KA, Montague PR. Computational heterogeneity in the human mesencephalic dopamine system. Cogn Affect Behav Neurosci. 2013;13(4):747-756. doi:10.3758/s13415-013-0191-5
    1. Avena NM, Rada P, Hoebel BG. Underweight rats have enhanced dopamine release and blunted acetylcholine response in the nucleus accumbens while bingeing on sucrose. Neuroscience. 2008;156(4):865-871. doi:10.1016/j.neuroscience.2008.08.017
    1. Carr KD. Chronic food restriction: enhancing effects on drug reward and striatal cell signaling. Physiol Behav. 2007;91(5):459-472. doi:10.1016/j.physbeh.2006.09.021
    1. Johnson PM, Kenny PJ. Dopamine D2 receptors in addiction-like reward dysfunction and compulsive eating in obese rats. Nat Neurosci. 2010;13(5):635-641. doi:10.1038/nn.2519
    1. Volkow ND. Addiction reviews: introduction. Ann N Y Acad Sci. 2008;1141:xi-xii. doi:10.1196/annals.1441.034
    1. Oinio V, Bäckström P, Uhari-Väänänen J, Raasmaja A, Piepponen P, Kiianmaa K. Dopaminergic modulation of reward-guided decision making in alcohol-preferring AA rats. Behav Brain Res. 2017;326:87-95. doi:10.1016/j.bbr.2017.03.007
    1. Kelley AE. Ventral striatal control of appetitive motivation: role in ingestive behavior and reward-related learning. Neurosci Biobehav Rev. 2004;27(8):765-776. doi:10.1016/j.neubiorev.2003.11.015
    1. Carr KD, Tsimberg Y, Berman Y, Yamamoto N. Evidence of increased dopamine receptor signaling in food-restricted rats. Neuroscience. 2003;119(4):1157-1167. doi:10.1016/S0306-4522(03)00227-6
    1. Carr KD, Cabeza de Vaca S, Sun Y, Chau LS. Reward-potentiating effects of D-1 dopamine receptor agonist and AMPAR GluR1 antagonist in nucleus accumbens shell and their modulation by food restriction. Psychopharmacology (Berl). 2009;202(4):731-743. doi:10.1007/s00213-008-1355-9
    1. Monteleone AM, Castellini G, Volpe U, et al. . Neuroendocrinology and brain imaging of reward in eating disorders: a possible key to the treatment of anorexia nervosa and bulimia nervosa. Prog Neuropsychopharmacol Biol Psychiatry. 2018;80(Pt B):132-142. doi:10.1016/j.pnpbp.2017.02.020
    1. Frank GKW, DeGuzman MC, Shott ME. Motivation to eat and not to eat: the psycho-biological conflict in anorexia nervosa. Physiol Behav. 2019;206:185-190. doi:10.1016/j.physbeh.2019.04.007
    1. DeGuzman M, Shott ME, Yang TT, Riederer J, Frank GKW. Association of elevated reward prediction error response with weight gain in adolescent anorexia nervosa. Am J Psychiatry. 2017;174(6):557-565. doi:10.1176/appi.ajp.2016.16060671
    1. Frank GK, Reynolds JR, Shott ME, et al. . Anorexia nervosa and obesity are associated with opposite brain reward response. Neuropsychopharmacology. 2012;37(9):2031-2046. doi:10.1038/npp.2012.51
    1. Frank GKW, Reynolds JR, Shott ME, O’Reilly RC. Altered temporal difference learning in bulimia nervosa. Biol Psychiatry. 2011;70(8):728-735. doi:10.1016/j.biopsych.2011.05.011
    1. Frank GKW, DeGuzman MC, Shott ME, Laudenslager ML, Rossi B, Pryor T. Association of brain reward learning response with harm avoidance, weight gain, and hypothalamic effective connectivity in adolescent anorexia nervosa. JAMA Psychiatry. 2018;75(10):1071-1080. doi:10.1001/jamapsychiatry.2018.2151
    1. Frank GKW, Shott ME, DeGuzman MC. The neurobiology of eating disorders. Child Adolesc Psychiatr Clin N Am. 2019;28(4):629-640. doi:10.1016/j.chc.2019.05.007
    1. Wonderlich S, Mitchell JE, Crosby RD, et al. . Minimizing and treating chronicity in the eating disorders: a clinical overview. Int J Eat Disord. 2012;45(4):467-475. doi:10.1002/eat.20978
    1. Frank GKW, Favaro A, Marsh R, Ehrlich S, Lawson EA. Toward valid and reliable brain imaging results in eating disorders. Int J Eat Disord. 2018;51(3):250-261. doi:10.1002/eat.22829
    1. First MB, Williams JBW, Karg RS, Spitzer RL. User’s Guide for the Structured Clinical Interview for DSM-5 Disorders, Research Version (SCID-5-RV). Arlington, VA.: American Psychiatric Association.; 2015.
    1. Garner D. Eating Disorder Inventory™-3 (EDI™-3). Lutz, FL: Psychological Assessment Resources, Inc.; 2004.
    1. Torrubia R, Avila C, Molto J, Caseras X.. The Sensitivity to Punishment and Sensitivity to Reward Questionnaire (SPSRQ) as a measure of Gray's anxiety and impulsivity dimensions. Pers Individ Dif. 2001;31:837-862. doi:10.1016/S0191-8869(00)00183-5
    1. Spielberger CD. Manual for the State-Trait Anxiety Inventory. Palo Alto, CA: Consulting Psychologists Press, Inc.; 1983.
    1. Cloninger CR, Przybeck TR, Svrakic DM, Wetzel RD. The Temperament and Character Inventory (TCI): A Guide to its Development and Use. St. Louis, MO: Center for Psychobiology of Personality, Washington University; 1994.
    1. Beck AT, Steer RA, Ball R, Ranieri W. Comparison of Beck Depression Inventories -IA and -II in psychiatric outpatients. J Pers Assess. 1996;67(3):588-597. doi:10.1207/s15327752jpa6703_13
    1. Hohlstein L, Smith G, Atlas J. An application of expectancy theory on eating disorders: development and validation of measures of eating and dieting expectancies. Psychol Assess. 1998;10:49-58. doi:10.1037/1040-3590.10.1.49
    1. O’Doherty JP, Dayan P, Friston K, Critchley H, Dolan RJ. Temporal difference models and reward-related learning in the human brain. Neuron. 2003;38(2):329-337. doi:10.1016/S0896-6273(03)00169-7
    1. Mapping Statistical Parametric. SPM12. Accessed May 26, 2021.
    1. Olszowy W, Aston J, Rua C, Williams GB. Accurate autocorrelation modeling substantially improves fMRI reliability. Nat Commun. 2019;10(1):1220. doi:10.1038/s41467-019-09230-w
    1. Tzourio-Mazoyer N, Landeau B, Papathanassiou D, et al. . Automated anatomical labeling of activations in SPM using a macroscopic anatomical parcellation of the MNI MRI single-subject brain. Neuroimage. 2002;15(1):273-289. doi:10.1006/nimg.2001.0978
    1. O’Doherty J, Dayan P, Schultz J, Deichmann R, Friston K, Dolan RJ. Dissociable roles of ventral and dorsal striatum in instrumental conditioning. Science. 2004;304(5669):452-454. doi:10.1126/science.1094285
    1. Breiter HC, Gollub RL, Weisskoff RM, et al. . Acute effects of cocaine on human brain activity and emotion. Neuron. 1997;19(3):591-611. doi:10.1016/S0896-6273(00)80374-8
    1. Frank GK, Shott ME, Riederer J, Pryor TL. Altered structural and effective connectivity in anorexia and bulimia nervosa in circuits that regulate energy and reward homeostasis. Transl Psychiatry. 2016;6(11):e932. doi:10.1038/tp.2016.199
    1. Ramsey JD, Hanson SJ, Hanson C, Halchenko YO, Poldrack RA, Glymour C. Six problems for causal inference from fMRI. Neuroimage. 2010;49(2):1545-1558. doi:10.1016/j.neuroimage.2009.08.065
    1. NITRC . WFU_PickAtlas. Accessed May 26, 2021.
    1. Solomon S, Sawilowsky S. Impact of rank-based normalizing transformations on the accuracy of test scores. Journal of Modern Applied Statistical Methods. 2009;8(2):448-462. doi:10.22237/jmasm/1257034080
    1. Benjamini Y, Hochberg Y. Controlling the false discovery rate: a practical and powerful approach to multiple testing. J R Statist Soc B. 1995;57(289-300). doi:10.1111/j.2517-6161.1995.tb02031.x
    1. Stratford TR, Kelley AE. Evidence of a functional relationship between the nucleus accumbens shell and lateral hypothalamus subserving the control of feeding behavior. J Neurosci. 1999;19(24):11040-11048. doi:10.1523/JNEUROSCI.19-24-11040.1999
    1. Kraus N, Niedeggen M, Hesselmann G. Trait anxiety is linked to increased usage of priors in a perceptual decision making task. Cognition. 2021;206:104474. doi:10.1016/j.cognition.2020.104474
    1. Dignon A, Beardsmore A, Spain S, Kuan A. ‘Why I won’t eat’: patient testimony from 15 anorexics concerning the causes of their disorder. J Health Psychol. 2006;11(6):942-956. doi:10.1177/1359105306069097
    1. Chakravarthy S, Balasubramani PP, Mandali A, Jahanshahi M, Moustafa AA. The many facets of dopamine: toward an integrative theory of the role of dopamine in managing the body’s energy resources. Physiol Behav. 2018;195:128-141. doi:10.1016/j.physbeh.2018.06.032
    1. O’Connor EC, Kremer Y, Lefort S, et al. . Accumbal D1R neurons projecting to lateral hypothalamus authorize feeding. Neuron. 2015;88(3):553-564. doi:10.1016/j.neuron.2015.09.038
    1. Castro DC, Cole SL, Berridge KC. Lateral hypothalamus, nucleus accumbens, and ventral pallidum roles in eating and hunger: interactions between homeostatic and reward circuitry. Front Syst Neurosci. 2015;9:90. doi:10.3389/fnsys.2015.00090
    1. Forrest LN, Sarfan LD, Ortiz SN, Brown TA, Smith AR. Bridging eating disorder symptoms and trait anxiety in patients with eating disorders: a network approach. Int J Eat Disord. 2019;52(6):701-711. doi:10.1002/eat.23070
    1. Hintsanen M, Jokela M, Cloninger CR, et al. . Temperament and character predict body-mass index: a population-based prospective cohort study. J Psychosom Res. 2012;73(5):391-397. doi:10.1016/j.jpsychores.2012.08.012
    1. Vainik U, García-García I, Dagher A. Uncontrolled eating: a unifying heritable trait linked with obesity, overeating, personality and the brain. Eur J Neurosci. 2019;50(3):2430-2445. doi:10.1111/ejn.14352
    1. Nagano-Saito A, Leyton M, Monchi O, Goldberg YK, He Y, Dagher A. Dopamine depletion impairs frontostriatal functional connectivity during a set-shifting task. J Neurosci. 2008;28(14):3697-3706. doi:10.1523/JNEUROSCI.3921-07.2008
    1. Volkow ND, Fowler JS, Wang GJ. Role of dopamine in drug reinforcement and addiction in humans: results from imaging studies. Behav Pharmacol. 2002;13(5-6):355-366. doi:10.1097/00008877-200209000-00008
    1. Kelley AE, Berridge KC. The neuroscience of natural rewards: relevance to addictive drugs. J Neurosci. 2002;22(9):3306-3311. doi:10.1523/JNEUROSCI.22-09-03306.2002
    1. Cruz-Sáez S, Pascual A, Wlodarczyk A, Echeburúa E. The effect of body dissatisfaction on disordered eating: the mediating role of self-esteem and negative affect in male and female adolescents. J Health Psychol. 2020;25(8):1098-1108. doi:10.1177/1359105317748734
    1. Jappe LM, Frank GK, Shott ME, et al. . Heightened sensitivity to reward and punishment in anorexia nervosa. Int J Eat Disord. 2011;44(4):317-324. doi:10.1002/eat.20815
    1. Frank GK, Roblek T, Shott ME, et al. . Heightened fear of uncertainty in anorexia and bulimia nervosa. Int J Eat Disord. 2012;45(2):227-232. doi:10.1002/eat.20929
    1. Fischer AG, Ullsperger M. An update on the role of serotonin and its interplay with dopamine for reward. Front Hum Neurosci. 2017;11:484. doi:10.3389/fnhum.2017.00484
    1. Morita K, Kawaguchi Y. A dual role hypothesis of the cortico-basal-ganglia pathways: opponency and temporal difference through dopamine and adenosine. Front Neural Circuits. 2019;12:111. doi:10.3389/fncir.2018.00111
    1. Verhagen LA, Luijendijk MC, Korte-Bouws GA, Korte SM, Adan RA. Dopamine and serotonin release in the nucleus accumbens during starvation-induced hyperactivity. Eur Neuropsychopharmacol. 2009;19(5):309-316. doi:10.1016/j.euroneuro.2008.12.008
    1. Diederen KM, Ziauddeen H, Vestergaard MD, Spencer T, Schultz W, Fletcher PC. Dopamine modulates adaptive prediction error coding in the human midbrain and striatum. J Neurosci. 2017;37(7):1708-1720. doi:10.1523/JNEUROSCI.1979-16.2016
    1. Diederen KMJ, Fletcher PC. Dopamine, prediction error and beyond. Neuroscientist. 2021;27(1):30-46. doi:10.1177/1073858420907591
    1. Schultz W. Recent advances in understanding the role of phasic dopamine activity. F1000Res. 2019;8:8. doi:10.12688/f1000research.19793.1

Source: PubMed

3
订阅