Estimation of amyloid distribution by [18F]flutemetamol PET predicts the neuropathological phase of amyloid β-protein deposition

Dietmar Rudolf Thal, Thomas G Beach, Michelle Zanette, Johan Lilja, Kerstin Heurling, Aruna Chakrabarty, Azzam Ismail, Gill Farrar, Christopher Buckley, Adrian P L Smith, Dietmar Rudolf Thal, Thomas G Beach, Michelle Zanette, Johan Lilja, Kerstin Heurling, Aruna Chakrabarty, Azzam Ismail, Gill Farrar, Christopher Buckley, Adrian P L Smith

Abstract

The deposition of the amyloid β-protein (Aβ) in senile plaques is one of the histopathological hallmarks of Alzheimer's disease (AD). Aβ-plaques arise first in neocortical areas and, then, expand into further brain regions in a process described by 5 phases. Since it is possible to identify amyloid pathology with radioactive-labeled tracers by positron emission tomography (PET) the question arises whether it is possible to distinguish the neuropathological Aβ-phases with amyloid PET imaging. To address this question we reassessed 97 cases of the end-of-life study cohort of the phase 3 [18F]flutemetamol trial (ClinicalTrials.gov identifiers NCT01165554, and NCT02090855) by combining the standardized uptake value ratios (SUVRs) with pons as reference region for cortical and caudate nucleus-related [18F]flutemetamol-retention. We tested them for their prediction of the neuropathological pattern found at autopsy. By defining threshold levels for cortical and caudate nucleus SUVRs we could distinguish different levels of [18F]flutemetamol uptake termed PET-Aβ phase estimates. When comparing these PET-Aβ phase estimates with the neuropathological Aβ-phases we found that PET-Aβ phase estimate 0 corresponded with Aβ-phases 0-2, 1 with Aβ-phase 3, 2 with Aβ-phase 4, and 3 with Aβ-phase 5. Classification using the PET-Aβ phase estimates predicted the correct Aβ-phase in 72.16% of the cases studied here. Bootstrap analysis was used to confirm the robustness of the estimates around this association. When allowing a range of ± 1 phase for a given Aβ-phase correct classification was given in 96.91% of the cases. In doing so, we provide a novel method to convert SUVR-levels into PET-Aβ phase estimates that can be easily translated into neuropathological phases of Aβ-deposition. This method allows direct conclusions about the pathological distribution of amyloid plaques (Aβ-phases) in vivo. Accordingly, this method may be ideally suited to detect early preclinical AD-patients, to follow them with disease progression, and to provide a more precise prognosis for them based on the knowledge about the underlying pathological phase of the disease.

Keywords: Amyloid PET; Amyloid β-protein; Imaging; Neuropathological staging; [18F]Flutemetamol.

Conflict of interest statement

DRT received consultancies from Covance Laboratories (UK) and GE-Healthcare (UK), and collaborated with Novartis Pharma Basel (Switzerland), Probiodrug (Germany), and Janssen Pharmaceutical Companies (Belgium). TGB received a consultancy from GE-Healthcare (UK). MZ, GF, CB, APLS are employees of GE-Healthcare (UK, USA). JL and KH were employees of GE-Healthcare (Sweden). JL is currently employee of Hermes Medical Solutions (Sweden). AC and AI received personal fees from GE-Healthcare via the University of Leeds.

Figures

Fig. 1
Fig. 1
Boxplot diagrams describing the relationship between the pathologically determined Aβ-phases and the cortical SUVR (SUVRcort) (a), the caudate nucleus SUVR (SUVRcaud) (b), the added cortical and caudate SUVRs (SUVRcort + caud) (c), the PET-stage of Aβ-pathology distribution according to Hanseeuw [15] (PET amyloid stage) (d), and the PET estimate of the pathological Aβ-phase (PET-Aβ phase estimate) (e). Note that the SUVR-based PET-Aβ phase estimates allowed detection of all Aβ-phase 3, 4 and 5 cases as well as of single Aβ-phase 1/2 cases (e) whereas Aβ-phase 1, 2 and most Aβ-phase 3 cases were rated as amyloid negative by visual analysis (d). The boxes contain the 50% of cases lying in the 2nd and 3rd quartile. The bars indicate the median. The whiskers display the 1.5-times interquartile range. Stars or circles indicate outliers. The individual data of the cases depicted here are provided in Suppl. Tab. 1. n = 97 cases
Fig. 2
Fig. 2
SUVR-based protocol for determination of PET-Aβ phase estimates and its link to the pathologically determined phases of Aβ-plaque deposition [36]. Although Aβ-phases 1 and 2 cannot be detected by [18F]flutemetamol PET, cases in Aβ-phase 3 can be identified within one group, i.e. PET-Aβ phase estimate 1, cases in Aβ-phases 4 and 5, respectively, in two further groups, i.e. PET-Aβ phase estimates 2 and 3. The red mark in the schematic representation of the Aβ-phases covers the area in which newly developed plaques in a given phase will develop. This does not mean that the entire red marked field is filled up with Aβ-plaques but that the first small groups of plaques in a given phase of Aβ-depositions can be found there. SUVRCortex(pons) = SUVRcort; SUVRNCaudatus(pons) = SUVRcaud. Picture elements of this figure were taken from a previously published figure [35] and reused with permission

References

    1. Alafuzoff I, Pikkarainen M, Al-Sarraj S, Arzberger T, Bell J, Bodi I, et al. Interlaboratory comparison of assessments of Alzheimer disease-related lesions: a study of the BrainNet Europe Consortium. J Neuropathol Exp Neurol. 2006;65:740–757. doi: 10.1097/01.jnen.0000229986.17548.27.
    1. Alafuzoff I, Pikkarainen M, Arzberger T, Thal DR, Al-Sarraj S, Bell J, et al. Inter-laboratory comparison of neuropathological assessments of beta-amyloid protein: a study of the BrainNet Europe consortium. Acta Neuropathol. 2008;115:533–546. doi: 10.1007/s00401-008-0358-2.
    1. Alafuzoff I, Thal DR, Arzberger T, Bogdanovic N, Al-Sarraj S, Bodi I, et al. Assessment of beta-amyloid deposits in human brain: a study of the BrainNet Europe Consortium. Acta Neuropathol. 2009;117:309–320. doi: 10.1007/s00401-009-0485-4.
    1. Alzheimer’s A. 2016 Alzheimer’s disease facts and figures. Alzheimers Dement. 2016;12:459–509. doi: 10.1016/j.jalz.2016.03.001.
    1. Alzheimer A. Ueber eine eigenartige Erkrankung der Hirnrinde. Allg Zschr Psych. 1907;64:146–148.
    1. Beach TG, Thal DR, Zanette M, Smith A, Buckley C. Detection of striatal amyloid plaques with [18F]flutemetamol: validation with postmortem histopathology. J Alzheimers Dis. 2016;52:863–873. doi: 10.3233/JAD-150732.
    1. Braak H, Braak E. Neuropathological stageing of Alzheimer-related changes. Acta Neuropathol. 1991;82:239–259. doi: 10.1007/BF00308809.
    1. Cho SH, Shin JH, Jang H, Park S, Kim HJ, Kim SE, et al. Amyloid involvement in subcortical regions predicts cognitive decline. Eur J Nucl Med Mol Imaging. 2018
    1. Clark CM, Pontecorvo MJ, Beach TG, Bedell BJ, Coleman RE, Doraiswamy PM, et al. Cerebral PET with florbetapir compared with neuropathology at autopsy for detection of neuritic amyloid-beta plaques: a prospective cohort study. Lancet Neurol. 2012;11:669–678. doi: 10.1016/S1474-4422(12)70142-4.
    1. Crary JF, Trojanowski JQ, Schneider JA, Abisambra JF, Abner EL, Alafuzoff I, et al. Primary age-related tauopathy (PART): a common pathology associated with human aging. Acta Neuropathol. 2014;128:755–766. doi: 10.1007/s00401-014-1349-0.
    1. Curtis C, Gamez JE, Singh U, Sadowsky CH, Villena T, Sabbagh MN, et al. Phase 3 trial of flutemetamol labeled with radioactive fluorine 18 imaging and neuritic plaque density. JAMA Neurol. 2015;72:287–294. doi: 10.1001/jamaneurol.2014.4144.
    1. Gold G, Kovari E, Corte G, Herrmann FR, Canuto A, Bussiere T, et al. Clinical validity of A beta-protein deposition staging in brain aging and Alzheimer disease. J Neuropathol Exp Neurol. 2001;60:946–952. doi: 10.1093/jnen/60.10.946.
    1. Grothe MJ, Barthel H, Sepulcre J, Dyrba M, Sabri O, Teipel SJ, et al. In vivo staging of regional amyloid deposition. Neurology. 2017;89:2031–2038. doi: 10.1212/WNL.0000000000004643.
    1. Grundke-Iqbal I, Iqbal K, Quinlan M, Tung YC, Zaidi MS, Wisniewski HM. Microtubule-associated protein tau. A component of Alzheimer paired helical filaments. J Biol Chem. 1986;261:6084–6089.
    1. Hanseeuw BJ, Betensky RA, Mormino EC, Schultz AP, Sepulcre J, Becker JA, et al. PET staging of amyloidosis using striatum. Alzheimers Dement. 2018
    1. Hyman BT, Phelps CH, Beach TG, Bigio EH, Cairns NJ, Carrillo MC, et al. National Institute on Aging–Alzheimer’s Association guidelines for the neuropathologic assessment of Alzheimer’s disease. Alzheimers Dement. 2012;8:1–13. doi: 10.1016/j.jalz.2011.10.007.
    1. Ikonomovic MD, Buckley CJ, Heurling K, Sherwin P, Jones PA, Zanette M, et al. Post-mortem histopathology underlying beta-amyloid PET imaging following flutemetamol F 18 injection. Acta Neuropathol Commun. 2016;4:130. doi: 10.1186/s40478-016-0399-z.
    1. Jack CR, Jr, Barrio JR, Kepe V. Cerebral amyloid PET imaging in Alzheimer’s disease. Acta Neuropathol. 2013;126:643–657. doi: 10.1007/s00401-013-1185-7.
    1. Josephs KA, Murray ME, Tosakulwong N, Whitwell JL, Knopman DS, Machulda MM, et al. Tau aggregation influences cognition and hippocampal atrophy in the absence of beta-amyloid: a clinico-imaging-pathological study of primary age-related tauopathy (PART) Acta Neuropathol. 2017;133:705–715. doi: 10.1007/s00401-017-1681-2.
    1. Kida E, Wisniewski KE, Wisniewski HM. Early amyloid-beta deposits show different immunoreactivity to the amino- and carboxy-terminal regions of beta-peptide in Alzheimer’s disease and Down’s syndrome brain. Neurosci Lett. 1995;193:105–108. doi: 10.1016/0304-3940(95)11678-P.
    1. Klunk WE, Engler H, Nordberg A, Wang Y, Blomqvist G, Holt DP, et al. Imaging brain amyloid in Alzheimer’s disease with Pittsburgh compound-B. Ann Neurol. 2004;55:306–319. doi: 10.1002/ana.20009.
    1. Landau SM, Thomas BA, Thurfjell L, Schmidt M, Margolin R, Mintun M, et al. Amyloid PET imaging in Alzheimer’s disease: a comparison of three radiotracers. Eur J Nucl Med Mol Imaging. 2014;41:1398–1407. doi: 10.1007/s00259-014-2753-3.
    1. Leal SL, Lockhart SN, Maass A, Bell RK, Jagust WJ. Subthreshold amyloid predicts tau deposition in aging. J Neurosci. 2018
    1. Lim YY, Maruff P, Pietrzak RH, Ames D, Ellis KA, Harrington K, et al. Effect of amyloid on memory and non-memory decline from preclinical to clinical Alzheimer’s disease. Brain. 2014;137:221–231. doi: 10.1093/brain/awt286.
    1. Mackenzie IR, Neumann M, Bigio EH, Cairns NJ, Alafuzoff I, Kril J, et al. Nomenclature and nosology for neuropathologic subtypes of frontotemporal lobar degeneration: an update. Acta Neuropathol. 2010;119:1–4. doi: 10.1007/s00401-009-0612-2.
    1. Masters CL, Simms G, Weinman NA, Multhaup G, McDonald BL, Beyreuther K. Amyloid plaque core protein in Alzheimer disease and Down syndrome. Proc Natl Acad Sci USA. 1985;82:4245–4249. doi: 10.1073/pnas.82.12.4245.
    1. Murray ME, Lowe VJ, Graff-Radford NR, Liesinger AM, Cannon A, Przybelski SA, et al. Clinicopathologic and 11C-Pittsburgh compound B implications of Thal amyloid phase across the Alzheimer’s disease spectrum. Brain. 2015;138:1370–1381. doi: 10.1093/brain/awv050.
    1. Rijal Upadhaya A, Kosterin I, Kumar S, Von Arnim C, Yamaguchi H, Fändrich M, et al. Biochemical stages of amyloid β-peptide aggregation and accumulation in the human brain and their association with symptomatic and pathologically-preclinical Alzheimer’s disease. Brain. 2014;137:887–903. doi: 10.1093/brain/awt362.
    1. Rowe CC, Ng S, Ackermann U, Gong SJ, Pike K, Savage G, et al. Imaging beta-amyloid burden in aging and dementia. Neurology. 2007;68:1718–1725. doi: 10.1212/01.wnl.0000261919.22630.ea.
    1. Sabri O, Sabbagh MN, Seibyl J, Barthel H, Akatsu H, Ouchi Y, et al. Florbetaben PET imaging to detect amyloid beta plaques in Alzheimer disease: phase 3 study. Alzheimers Dement. 2015
    1. Salloway S, Gamez JE, Singh U, Sadowsky CH, Villena T, Sabbagh MN, et al. Performance of [(18)F]flutemetamol amyloid imaging against the neuritic plaque component of CERAD and the current (2012) NIA-AA recommendations for the neuropathologic diagnosis of Alzheimer’s disease. Alzheimers Dement (Amst) 2017;9:25–34.
    1. Schwarz A, Yu P, Miller BB, Shcherbinin S, Dickson J, Navitsky M, et al. Regional profiles of the candidate tau PET ligand [18F]-AV-1541 recapitulate key features of Braak histopathological stages. Brain. 2016;139:1539–1550. doi: 10.1093/brain/aww023.
    1. Spires-Jones TL, Attems J, Thal DR. Interactions of pathological proteins in neurodegenerative diseases. Acta Neuropathol. 2017;134:187–205. doi: 10.1007/s00401-017-1709-7.
    1. Thal DR, Beach TG, Zanette M, Heurling K, Chakrabarty A, Ismail A, et al. [18F]flutemetamol amyloid PET in preclinical and symptomatic Alzheimer’s disease: specific detection of advanced phases of Aβ pathology. Alzheimers Dement. 2015;11:975–985. doi: 10.1016/j.jalz.2015.05.018.
    1. Thal DR, Del Tredici K, Braak H. Neurodegeneration in normal brain aging and disease. Sci Aging Knowl Environ. 2004;2004:PE26. doi: 10.1126/sageke.2004.23.pe26.
    1. Thal DR, Rüb U, Orantes M, Braak H. Phases of Abeta-deposition in the human brain and its relevance for the development of AD. Neurology. 2002;58:1791–1800. doi: 10.1212/WNL.58.12.1791.
    1. Thal DR, Sassin I, Schultz C, Haass C, Braak E, Braak H. Fleecy amyloid deposits in the internal layers of the human entorhinal cortex are comprised of N-terminal truncated fragments of Abeta. J Neuropathol Exp Neurol. 1999;58:210–216. doi: 10.1097/00005072-199902000-00010.
    1. Thal DR, von Arnim C, Griffin WS, Yamaguchi H, Mrak RE, Attems J, et al. Pathology of clinical and preclinical Alzheimer’s disease. Eur Arch Psychiatry Clin Neurosci. 2013;263(Suppl 2):S137–S145. doi: 10.1007/s00406-013-0449-5.
    1. Vandenberghe R, Van Laere K, Ivanoiu A, Salmon E, Bastin C, Triau E, et al. 18F-flutemetamol amyloid imaging in Alzheimer disease and mild cognitive impairment: a phase 2 trial. Ann Neurol. 2010;68:319–329. doi: 10.1002/ana.22068.
    1. Villemagne VL, Mulligan RS, Pejoska S, Ong K, Jones G, O’Keefe G, et al. Comparison of 11C-PiB and 18F-florbetaben for Abeta imaging in ageing and Alzheimer’s disease. Eur J Nucl Med Mol Imaging. 2012;39:983–989. doi: 10.1007/s00259-012-2088-x.
    1. Yang L, Rieves D, Ganley C. Brain amyloid imaging—FDA approval of florbetapir F18 injection. N Engl J Med. 2012;367:885–887. doi: 10.1056/NEJMp1208061.

Source: PubMed

3
订阅