Comparison of Mesenchymal Stem Cell Efficacy in Ischemic Versus Nonischemic Dilated Cardiomyopathy

Bryon A Tompkins, Angela C Rieger, Victoria Florea, Monisha N Banerjee, Makoto Natsumeda, Evan D Nigh, Ana Marie Landin, Gianna M Rodriguez, Konstantinos E Hatzistergos, Ivonne Hernandez Schulman, Joshua M Hare, Bryon A Tompkins, Angela C Rieger, Victoria Florea, Monisha N Banerjee, Makoto Natsumeda, Evan D Nigh, Ana Marie Landin, Gianna M Rodriguez, Konstantinos E Hatzistergos, Ivonne Hernandez Schulman, Joshua M Hare

Abstract

Background: Ischemic cardiomyopathy (ICM) and dilated cardiomyopathy (DCM) differ in histopathology and prognosis. Although transendocardial delivery of mesenchymal stem cells is safe and provides cardiovascular benefits in both, a comparison of mesenchymal stem cell efficacy in ICM versus DCM has not been done.

Methods and results: We conducted a subanalysis of 3 single-center, randomized, and blinded clinical trials: (1) TAC-HFT (Transendocardial Autologous Mesenchymal Stem Cells and Mononuclear Bone Marrow Cells in Ischemic Heart Failure Trial); (2) POSEIDON (A Phase I/II, Randomized Pilot Study of the Comparative Safety and Efficacy of Transendocardial Injection of Autologous Mesenchymal Stem Cells Versus Allogeneic Mesenchymal Stem Cells in Patients With Chronic Ischemic Left Ventricular Dysfunction Secondary to Myocardial Infarction); and (3) POSEIDON-DCM (Percutaneous Stem Cell Injection Delivery Effects on Neomyogenesis in Dilated Cardiomyopathy). Baseline and 1-year cardiac structure and function and quality-of-life data were compared in a post hoc pooled analysis including ICM (n=46) and DCM (n=33) patients who received autologous or allogeneic mesenchymal stem cells. Ejection fraction improved in DCM by 7% (within-group, P=0.002) compared to ICM (1.5%; within-group, P=0.14; between-group, P=0.003). Similarly, stroke volume increased in DCM by 10.59 mL (P=0.046) versus ICM (-0.2 mL; P=0.73; between-group, P=0.02). End-diastolic volume improved only in ICM (10.6 mL; P=0.04) and end-systolic volume improved only in DCM (17.8 mL; P=0.049). The sphericity index decreased only in ICM (-0.04; P=0.0002). End-diastolic mass increased in ICM (23.1 g; P<0.0001) versus DCM (-4.1 g; P=0.34; between-group, P=0.007). The 6-minute walk test improved in DCM (31.1 m; P=0.009) and ICM (36.3 m; P=0.006) with no between-group difference (P=0.79). The New York Heart Association class improved in DCM (P=0.005) and ICM (P=0.02; between-group P=0.20). The Minnesota Living with Heart Failure Questionnaire improved in DCM (-19.5; P=0.002) and ICM (-6.4; P=0.03; δ between-group difference P=0.042) patients.

Conclusions: Mesenchymal stem cell therapy is beneficial in DCM and ICM patients, despite variable effects on cardiac phenotypic outcomes. Whereas cardiac function improved preferentially in DCM patients, ICM patients experienced reverse remodeling. Mesenchymal stem cell therapy enhanced quality of life and functional capacity in both etiologies.

Clinical trial registration: URL: http://www.clinicaltrials.gov. Unique identifiers: TAC-HFT: NCT00768066, POSEIDON: NCT01087996, POSEIDON-DCM: NCT01392625.

Keywords: functional capacity impairment; mesenchymal stem cell; remodeling heart failure; stem cell.

© 2018 The Authors. Published on behalf of the American Heart Association, Inc., by Wiley.

Figures

Figure 1
Figure 1
Changes in cardiac function in DCM (blue) and ICM (red) patients. A, EF increased from baseline in DCM (blue circles) by 7 EF units (2.9, 11.0; P=0.002), but not in ICM (red squares). DCM group showed a significant improvement over time in (B) stroke volume by 10.6 mL (95% CI, 0.2, 21.0; P=0.046) and (C) end‐systolic volume by −17.8 mL (interquartile range, −54.5, 17.0; P=0.049). However, the ICM group improved in (D) end‐diastolic volume by −8.32 mL (95% CI: −21.0, −0.3; P=0.05) from baseline, whereas DCM did not. E, Sphericity index improved in ICM by −0.04% (95% CI, −0.06, −0.02; P=0.0002). F, End‐diastolic mass increased in ICM by 23.1 g (95% 13.9, 32.2; P<0.0001) at follow‐up, with a significant difference between both groups (P=0.0003). DCM indicates dilated cardiomyopathy; ED, end diastolic; EDV, end‐diastolic volume; EF, ejection fraction; ESV, end‐systolic volume; ICM, ischemic cardiomyopathy; SV, stroke volume.
Figure 2
Figure 2
Functional capacity and quality of life in DCM (blue) and ICM (red) patients. A, 6MWT increased at follow‐up from baseline in both groups: DCM group by 31.1 m (95% CI, 3.8, 6.4; P=0.009) and ICM group by 36.3 m (95% CI, 10.9, 61.6; P=0.00062). B, New York Heart Association (NYHA) class improved in both, DCM (P=0.005) and ICM (P=0.02) groups, with no between group differences. C, Minnesota Living with Heart Failure Questionnaire (MLHFQ) total score improved from baseline to 12 months postinjection in both groups, with a difference between means of 11.05 (95% CI, 0.44, 21.67; P=0.042). DCM indicates dilated cardiomyopathy; ICM, ischemic cardiomyopathy.

References

    1. Hare JM, DiFede DL, Rieger AC, Florea V, Landin AM, El‐Khorazaty J, Khan A, Mushtaq M, Lowery MH, Byrnes JJ, Hendel RC, Cohen MG, Alfonso CE, Valasaki K, Pujol MV, Golpanian S, Ghersin E, Fishman JE, Pattany P, Gomes SA, Delgado C, Miki R, Abuzeid F, Vidro‐Casiano M, Premer C, Medina A, Porras V, Hatzistergos KE, Anderson E, Mendizabal A, Mitrani R, Heldman AW. Randomized comparison of allogeneic versus autologous mesenchymal stem cells for nonischemic dilated cardiomyopathy: POSEIDON‐DCM trial. J Am Coll Cardiol. 2017;69:526–537.
    1. Karantalis V, Hare JM. Use of mesenchymal stem cells for therapy of cardiac disease. Circ Res. 2015;116:1413–1430.
    1. Global Burden of Disease 2016 Causes of Death Collaborators . Global, regional, and national age‐specific mortality for 264 causes of death, 1980‐2016: a systematic analysis for the Global Burden of Disease Study 2016. Lancet. 2017;390:1151–1210.
    1. Hodgkinson CP, Bareja A, Gomez JA, Dzau VJ. Emerging concepts in paracrine mechanisms in regenerative cardiovascular medicine and biology. Circ Res. 2016;118:95–107.
    1. Golpanian S, Wolf A, Hatzistergos KE, Hare JM. Rebuilding the damaged heart: mesenchymal stem cells, cell‐based therapy, and engineered heart tissue. Physiol Rev. 2016;96:1127–1168.
    1. Premer C, Blum A, Bellio MA, Schulman IH, Hurwitz BE, Parker M, Dermarkarian CR, DiFede DL, Balkan W, Khan A, Hare JM. Allogeneic mesenchymal stem cells restore endothelial function in heart failure by stimulating endothelial progenitor cells. EBioMedicine. 2015;2:467–475.
    1. Hare JM, Fishman JE, Gerstenblith G, DiFede Velazquez DL, Zambrano JP, Suncion VY, Tracy M, Ghersin E, Johnston PV, Brinker JA, Breton E, Davis‐Sproul J, Schulman IH, Byrnes J, Mendizabal AM, Lowery MH, Rouy D, Altman P, Wong Po Foo C, Ruiz P, Amador A, Da Silva J, McNiece IK, Heldman AW, George R, Lardo A. Comparison of allogeneic vs autologous bone marrow–derived mesenchymal stem cells delivered by transendocardial injection in patients with ischemic cardiomyopathy: the POSEIDON randomized trial. JAMA. 2012;308:2369–2379.
    1. Heldman AW, DiFede DL, Fishman JE, Zambrano JP, Trachtenberg BH, Karantalis V, Mushtaq M, Williams AR, Suncion VY, McNiece IK, Ghersin E, Soto V, Lopera G, Miki R, Willens H, Hendel R, Mitrani R, Pattany P, Feigenbaum G, Oskouei B, Byrnes J, Lowery MH, Sierra J, Pujol MV, Delgado C, Gonzalez PJ, Rodriguez JE, Bagno LL, Rouy D, Altman P, Foo CW, da Silva J, Anderson E, Schwarz R, Mendizabal A, Hare JM. Transendocardial mesenchymal stem cells and mononuclear bone marrow cells for ischemic cardiomyopathy: the TAC‐HFT randomized trial. JAMA. 2014;311:62–73.
    1. Williams AR, Suncion VY, McCall F, Guerra D, Mather J, Zambrano JP, Heldman AW, Hare JM. Durable scar size reduction due to allogeneic mesenchymal stem cell therapy regulates whole‐chamber remodeling. J Am Heart Assoc. 2013;2:e000140. doi: 10.1161/JAHA.113.000140.
    1. Lee HW, Lee HC, Park JH, Kim BW, Ahn J, Kim JH, Park JS, Oh JH, Choi JH, Cha KS, Hong TJ, Park TS, Kim SP, Song S, Kim JY, Park MH, Jung JS. Effects of intracoronary administration of autologous adipose tissue‐derived stem cells on acute myocardial infarction in a porcine model. Yonsei Med J. 2015;56:1522–1529.
    1. Hatzistergos KE, Quevedo H, Oskouei BN, Hu Q, Feigenbaum GS, Margitich IS, Mazhari R, Boyle AJ, Zambrano JP, Rodriguez JE, Dulce R, Pattany PM, Valdes D, Revilla C, Heldman AW, McNiece I, Hare JM. Bone marrow mesenchymal stem cells stimulate cardiac stem cell proliferation and differentiation. Circ Res. 2010;107:913–922.
    1. Bartunek J, Behfar A, Dolatabadi D, Vanderheyden M, Ostojic M, Dens J, El Nakadi B, Banovic M, Beleslin B, Vrolix M, Legrand V, Vrints C, Vanoverschelde JL, Crespo‐Diaz R, Homsy C, Tendera M, Waldman S, Wijns W, Terzic A. Cardiopoietic stem cell therapy in heart failure: the C‐CURE (Cardiopoietic stem Cell therapy in heart failURE) multicenter randomized trial with lineage‐specified biologics. J Am Coll Cardiol. 2013;61:2329–2338.
    1. Hare JM, Walford GD, Hruban RH, Hutchins GM, Deckers JW, Baughman KL. Ischemic cardiomyopathy: endomyocardial biopsy and ventriculographic evaluation of patients with congestive heart failure, dilated cardiomyopathy and coronary artery disease. J Am Coll Cardiol. 1992;20:1318–1325.
    1. Felker GM, Hu W, Hare JM, Hruban RH, Baughman KL, Kasper EK. The spectrum of dilated cardiomyopathy. The Johns Hopkins experience with 1,278 patients. Medicine (Baltimore). 1999;78:270–283.
    1. Felker GM, Thompson RE, Hare JM, Hruban RH, Clemetson DE, Howard DL, Baughman KL, Kasper EK. Underlying causes and long‐term survival in patients with initially unexplained cardiomyopathy. N Engl J Med. 2000;342:1077–1084.
    1. Hare JM. The dilated, restrictive and infiltrative cardiomyopathies In: Bonow RO, Mann D, Zipes D, Libby P, eds. Braunwald's Heart Disease: A Textbook of Cardiovascular Medicine. 9th ed Philadephia, PA: Elsevier/Saunders; 2010:1561–1581.
    1. Kelkar AA, Butler J, Schelbert EB, Greene SJ, Quyyumi AA, Bonow RO, Cohen I, Gheorghiade M, Lipinski MJ, Sun W, Luger D, Epstein SE. Mechanisms contributing to the progression of ischemic and nonischemic dilated cardiomyopathy: possible modulating effects of paracrine activities of stem cells. J Am Coll Cardiol. 2015;66:2038–2047.
    1. Nazarian S, Bluemke DA, Lardo AC, Zviman MM, Watkins SP, Dickfeld TL, Meininger GR, Roguin A, Calkins H, Tomaselli GF, Weiss RG, Berger RD, Lima JA, Halperin HR. Magnetic resonance assessment of the substrate for inducible ventricular tachycardia in nonischemic cardiomyopathy. Circulation. 2005;112:2821–2825.
    1. Aukrust P, Ueland T, Lien E, Bendtzen K, Muller F, Andreassen AK, Nordoy I, Aass H, Espevik T, Simonsen S, Froland SS, Gullestad L. Cytokine network in congestive heart failure secondary to ischemic or idiopathic dilated cardiomyopathy. Am J Cardiol. 1999;83:376–382.
    1. Kittleson MM, Minhas KM, Irizarry RA, Ye SQ, Edness G, Breton E, Conte JV, Tomaselli G, Garcia JG, Hare JM. Gene expression analysis of ischemic and nonischemic cardiomyopathy: shared and distinct genes in the development of heart failure. Physiol Genomics. 2005;21:299–307.
    1. Vrtovec B, Poglajen G, Sever M, Lezaic L, Socan A, Haddad F, Wu JC. CD34+ stem cell therapy in nonischemic dilated cardiomyopathy patients. Clin Pharmacol Ther. 2013;94:452–458.
    1. Fisher SA, Doree C, Mathur A, Taggart DP, Martin‐Rendon E. Stem cell therapy for chronic ischaemic heart disease and congestive heart failure. Cochrane Database Syst Rev. 2016;12:CD007888.
    1. Lipinski MJ, Luger D, Epstein SE. Mesenchymal stem cell therapy for the treatment of heart failure caused by ischemic or non‐ischemic cardiomyopathy: immunosuppression and its implications. Handb Exp Pharmacol. 2017;243:329–353.
    1. Perin EC, Borow KM, Silva GV, DeMaria AN, Marroquin OC, Huang PP, Traverse JH, Krum H, Skerrett D, Zheng Y, Willerson JT, Itescu S, Henry TD. A phase II dose‐escalation study of allogeneic mesenchymal precursor cells in patients with ischemic or nonischemic heart failure. Circ Res. 2015;117:576–584.
    1. Bartolucci J, Verdugo FJ, Gonzalez PL, Larrea RE, Abarzua E, Goset C, Rojo P, Palma I, Lamich R, Pedreros PA, Valdivia G, Lopez VM, Nazzal C, Alcayaga‐Miranda F, Cuenca J, Brobeck MJ, Patel AN, Figueroa FE, Khoury M. Safety and efficacy of the intravenous infusion of umbilical cord mesenchymal stem cells in patients with heart failure: a phase 1/2 randomized controlled trial (RIMECARD Trial [Randomized Clinical Trial of Intravenous Infusion Umbilical Cord Mesenchymal Stem Cells on Cardiopathy]). Circ Res. 2017;121:1192–1204.
    1. Henry TD, Traverse JH, Hammon BL, East CA, Bruckner B, Remmers AE, Recker D, Bull DA, Patel AN. Safety and efficacy of ixmyelocel‐T: an expanded, autologous multi‐cellular therapy, in dilated cardiomyopathy. Circ Res. 2014;115:730–737.
    1. Banovic M, Loncar Z, Behfar A, Vanderheyden M, Beleslin B, Zeiher A, Metra M, Terzic A, Bartunek J. Endpoints in stem cell trials in ischemic heart failure. Stem Cell Res Ther. 2015;6:159.
    1. Tompkins B, Balkan W, Hare JM. Perspectives on the evolution of stem cell therapy for heart failure. EBioMedicine. 2015;2:1838–1839.
    1. Butler J, Hamo CE, Udelson JE, O'Connor C, Sabbah HN, Metra M, Shah SJ, Kitzman DW, Teerlink JR, Bernstein HS, Brooks G, Depre C, DeSouza MM, Dinh W, Donovan M, Frische‐Danielson R, Frost RJ, Garza D, Gohring UM, Hellawell J, Hsia J, Ishihara S, Kay‐Mugford P, Koglin J, Kozinn M, Larson CJ, Mayo M, Gan LM, Mugnier P, Mushonga S, Roessig L, Russo C, Salsali A, Satler C, Shi V, Ticho B, van der Laan M, Yancy C, Stockbridge N, Gheorghiade M. Reassessing phase II heart failure clinical trials: consensus recommendations. Circ Heart Fail. 2017;10:e003800.
    1. Hare JM, Bolli R, Cooke JP, Gordon DJ, Henry TD, Perin EC, March KL, Murphy MP, Pepine CJ, Simari RD, Skarlatos SI, Traverse JH, Willerson JT, Szady AD, Taylor DA, Vojvodic RW, Yang PC, Moye LA. Phase II clinical research design in cardiology: learning the right lessons too well: observations and recommendations from the Cardiovascular Cell Therapy Research Network (CCTRN). Circulation. 2013;127:1630–1635.
    1. Kalil RA, Ott D, Sant'Anna R, Dias E, Marques‐Pereira JP, Delgado‐Canedo A, Nardi NB, Sant'Anna JR, Prates PR, Nesralla I. Autologous transplantation of bone marrow mononuclear stem cells by mini‐thoracotomy in dilated cardiomyopathy: technique and early results. Sao Paulo Med J. 2008;126:75–81.
    1. Wang JA, Xie XJ, He H, Sun Y, Jiang J, Luo RH, Fan YQ, Dong L. [A prospective, randomized, controlled trial of autologous mesenchymal stem cells transplantation for dilated cardiomyopathy]. Zhonghua Xin Xue Guan Bing Za Zhi. 2006;34:107–110.
    1. Chen S, Liu Z, Tian N, Zhang J, Yei F, Duan B, Zhu Z, Lin S, Kwan TW. Intracoronary transplantation of autologous bone marrow mesenchymal stem cells for ischemic cardiomyopathy due to isolated chronic occluded left anterior descending artery. J Invasive Cardiol. 2006;18:552–556.
    1. Florea V, Rieger AC, DiFede DL, El‐Khorazaty J, Natsumeda M, Banerjee MN, Tompkins BA, Khan A, Schulman IH, Landin AM, Mushtaq M, Golpanian S, Lowery MH, Byrnes JJ, Hendel RC, Cohen MG, Valasaki K, Pujol MV, Ghersin E, Miki R, Delgado C, Abuzeid F, Vidro‐Casiano M, Saltzman RG, DaFonseca D, Caceres LV, Ramdas KN, Mendizabal A, Heldman AW, Mitrani RD, Hare JM. Dose comparison study of allogeneic mesenchymal stem cells in patients with ischemic cardiomyopathy (the TRIDENT Study). Circ Res. 2017;121:1279–1290.
    1. White IA, Sanina C, Balkan W, Hare JM. Mesenchymal stem cells in cardiology. Methods Mol Biol. 2016;1416:55–87.
    1. Hatzistergos KE, Saur D, Seidler B, Balkan W, Breton M, Valasaki K, Takeuchi LM, Landin AM, Khan A, Hare JM. Stimulatory effects of mesenchymal stem cells on cKit+ cardiac stem cells are mediated by SDF1/CXCR4 and SCF/cKit signaling pathways. Circ Res. 2016;119:921–930.
    1. Huynh K. Stem cells: allogenic mesenchymal stem cells for dilated cardiomyopathy. Nat Rev Cardiol. 2017;14:190–191.
    1. Marti CN, Gheorghiade M, Kalogeropoulos AP, Georgiopoulou VV, Quyyumi AA, Butler J. Endothelial dysfunction, arterial stiffness, and heart failure. J Am Coll Cardiol. 2012;60:1455–1469.
    1. Levine B, Kalman J, Mayer L, Fillit HM, Packer M. Elevated circulating levels of tumor necrosis factor in severe chronic heart failure. N Engl J Med. 1990;323:236–241.
    1. Haudek SB, Taffet GE, Schneider MD, Mann DL. TNF provokes cardiomyocyte apoptosis and cardiac remodeling through activation of multiple cell death pathways. J Clin Invest. 2007;117:2692–2701.
    1. Bello D, Shah DJ, Farah GM, Di Luzio S, Parker M, Johnson MR, Cotts WG, Klocke FJ, Bonow RO, Judd RM, Gheorghiade M, Kim RJ. Gadolinium cardiovascular magnetic resonance predicts reversible myocardial dysfunction and remodeling in patients with heart failure undergoing β‐blocker therapy. Circulation. 2003;108:1945–1953.

Source: PubMed

3
订阅