Epigenetics and Liver Fibrosis

Eva Moran-Salvador, Jelena Mann, Eva Moran-Salvador, Jelena Mann

Abstract

Liver fibrosis arises because prolonged injury combined with excessive scar deposition within hepatic parenchyma arising from overactive wound healing response mediated by activated myofibroblasts. Fibrosis is the common end point for any type of chronic liver injury including alcoholic liver disease, nonalcoholic fatty liver disease, viral hepatitis, and cholestatic liver diseases. Although genetic influences are important, it is epigenetic mechanisms that have been shown to orchestrate many aspects of fibrogenesis in the liver. New discoveries in the field are leading toward the development of epigenetic biomarkers and targeted therapies. This review considers epigenetic mechanisms as well as recent advances in epigenetic programming in the context of hepatic fibrosis.

Keywords: CLD, chronic liver disease; Chronic Liver Disease; CpG, cytosine-phospho-guanine; DNA Methylation; DNMT, DNA methyltransferase; Epigenetics; HDAC, histone deacetylase; HSC, hepatic stellate cell; Histone Modifications; Liver Fibrosis; NAFLD, nonalcoholic fatty liver disease; PPAR, peroxisome proliferator activated receptor; TET, Ten Eleven Translocation; miRNA, microRNA; ncRNA, non-coding RNA.

Figures

Figure 1
Figure 1
Epigenetic mechanisms of heritable gene expression regulation. There are several highly interdependent epigenetic mechanisms that are important in the control of gene expression, namely DNA methylation (and hydroxymethylation), histone post-translational modifications, and ncRNA-based pathways, including small and long ncRNA species.

References

    1. Wynn T.A., Ramalingam T.R. Mechanisms of fibrosis: therapeutic translation for fibrotic disease. Nat Med. 2012;18:1028–1040.
    1. Friedman S.L. Mechanisms of hepatic fibrogenesis. Gastroenterology. 2008;134:1655–1669.
    1. Friedman S.L. Hepatic fibrosis: overview. Toxicology. 2008;254:120–129.
    1. Jaenisch R., Bird A. Epigenetic regulation of gene expression: how the genome integrates intrinsic and environmental signals. Nat Genet. 2003;33(Suppl):245–254.
    1. Berger S.L., Kouzarides T., Shiekhattar R., Shilatifard A. An operational definition of epigenetics. Genes Dev. 2009;23:781–783.
    1. van Dongen J., Nivard M.G., Willemsen G., Hottenga J.J., Helmer Q., Dolan C.V., Ehli E.A., Davies G.E., van Iterson M., Breeze C.E., Beck S., BIOS Consortium. Suchiman H.E., Jansen R., van Meurs J.B., Heijmans B.T., Slagboom P.E., Boomsma D.I. Genetic and environmental influences interact with age and sex in shaping the human methylome. Nat Commun. 2016;7:11115.
    1. Bannister A.J., Kouzarides T. Regulation of chromatin by histone modifications. Cell Res. 2011;21:381–395.
    1. Bartke T., Kouzarides T. Decoding the chromatin modification landscape. Cell Cycle. 2011;10:182.
    1. Bartke T., Vermeulen M., Xhemalce B., Robson S.C., Mann M., Kouzarides T. Nucleosome-interacting proteins regulated by DNA and histone methylation. Cell. 2010;143:470–484.
    1. Kouzarides T. Chromatin modifications and their function. Cell. 2007;128:693–705.
    1. Liu L., Jin G., Zhou X. Modeling the relationship of epigenetic modifications to transcription factor binding. Nucleic Acids Res. 2015;43:3873–3885.
    1. Berger S.L. The complex language of chromatin regulation during transcription. Nature. 2007;447:407–412.
    1. Jenuwein T., Allis C.D. Translating the histone code. Science. 2001;293:1074–1080.
    1. Zeybel M., Mann D.A., Mann J. Epigenetic modifications as new targets for liver disease therapies. J Hepatol. 2013;59:1349–1353.
    1. Murrell A., Rakyan V.K., Beck S. From genome to epigenome. Hum Mol Genet. 2005;14(Spec No 1):R3–R10.
    1. Yuan G.C. Linking genome to epigenome. Wiley Interdiscip Rev Syst Biol Med. 2012;4:297–309.
    1. Dokmanovic M., Clarke C., Marks P.A. Histone deacetylase inhibitors: overview and perspectives. Mol Cancer Res. 2007;5:981–989.
    1. Tammen S.A., Friso S., Choi S.W. Epigenetics: the link between nature and nurture. Mol Aspects Med. 2013;34:753–764.
    1. Suganuma T., Workman J.L. Signals and combinatorial functions of histone modifications. Annu Rev Biochem. 2011;80:473–499.
    1. Reik W., Dean W. DNA methylation and mammalian epigenetics. Electrophoresis. 2001;22:2838–2843.
    1. Klose R.J., Bird A.P. Genomic DNA methylation: the mark and its mediators. Trends Biochem Sci. 2006;31:89–97.
    1. Suzuki M.M., Bird A. DNA methylation landscapes: provocative insights from epigenomics. Nat Rev Genet. 2008;9:465–476.
    1. Jones P.A., Liang G. Rethinking how DNA methylation patterns are maintained. Nat Rev Genet. 2009;10:805–811.
    1. Bostick M., Kim J.K., Estève P.O., Clark A., Pradhan S., Jacobsen S.E. UHRF1 plays a role in maintaining DNA methylation in mammalian cells. Science. 2007;317:1760–1764.
    1. Slotkin R.K., Martienssen R. Transposable elements and the epigenetic regulation of the genome. Nat Rev Genet. 2007;8:272–285.
    1. Reik W., Dean W., Walter J. Epigenetic reprogramming in mammalian development. Science. 2001;293:1089–1093.
    1. Denis H., Ndlovu M.N., Fuks F. Regulation of mammalian DNA methyltransferases: a route to new mechanisms. EMBO Rep. 2011;12:647–656.
    1. Delatte B., Deplus R., Fuks F. Playing TETris with DNA modifications. EMBO J. 2014;33:1198–1211.
    1. Jones P.A. Functions of DNA methylation: islands, start sites, gene bodies and beyond. Nat Rev Genet. 2012;13:484–492.
    1. Mouse ENCODE Consortium, Stamatoyannopoulos J.A., Snyder M., Hardison R., Ren B., Gingeras T., Gilbert D.M., Groudine M., Bender M., Kaul R., Canfield T., Giste E., Johnson A., Zhang M., Balasundaram G., Byron R., Roach V., Sabo P.J., Sandstrom R., Stehling A.S., Thurman R.E., Weissman S.M., Cayting P., Hariharan M., Lian J., Cheng Y., Landt S.G., Ma Z., Wold B.J., Dekker J., Crawford G.E., Keller C.A., Wu W., Morrissey C., Kumar S.A., Mishra T., Jain D., Byrska-Bishop M., Blankenberg D., Lajoie B.R., Jain G., Sanyal A., Chen K.B., Denas O., Taylor J., Blobel G.A., Weiss M.J., Pimkin M., Deng W., Marinov G.K., Williams B.A., Fisher-Aylor K.I., Desalvo G., Kiralusha A., Trout D., Amrhein H., Mortazavi A., Edsall L., McCleary D., Kuan S., Shen Y., Yue F., Ye Z., Davis C.A., Zaleski C., Jha S., Xue C., Dobin A., Lin W., Fastuca M., Wang H., Guigo R., Djebali S., Lagarde J., Ryba T., Sasaki T., Malladi V.S., Cline M.S., Kirkup V.M., Learned K., Rosenbloom K.R., Kent W.J., Feingold E.A., Good P.J., Pazin M., Lowdon R.F., Adams L.B. An encyclopedia of mouse DNA elements (Mouse ENCODE) Genome Biol. 2012;13:418.
    1. Clark M.B., Johnston R.L., Inostroza-Ponta M., Fox A.H., Fortini E., Moscato P., Dinger M.E., Mattick J.S. Genome-wide analysis of long noncoding RNA stability. Genome Res. 2012;22:885–898.
    1. Wang X.W., Heegaard N.H.H., Ørum H. MicroRNAs in liver disease. Gastroenterology. 2012;142:1431–1443.
    1. Szabo G., Bala S. MicroRNAs in liver disease. Nat Rev Gastroenterol Hepatol. 2013;10:542–552.
    1. Roderburg C., Luedde T. Circulating microRNAs as markers of liver inflammation, fibrosis and cancer. J Hepatol. 2014;61:1434–1437.
    1. Chuang J.C., Jones P.A. Epigenetics and microRNAs. Pediatr Res. 2007;61(Pt 2):24R–29R.
    1. Saetrom P., Snove O., Jr., Rossi J.J. Epigenetics and microRNAs. Pediatr Res. 2007;61(Pt 2):7R–23R.
    1. Gu J., Stevens M., Xing X., Li D., Zhang B., Payton J.E., Oltz E.M., Jarvis J.N., Jiang K., Cicero T., Costello J.F., Wang T. G3: Genes|Genomes|Genetics; Bethesda: 2016. Mapping of variable DNA methylation across multiple cell types defines a dynamic regulatory landscape of the human genome.
    1. Zhong J., Agha G., Baccarelli A.A. The role of DNA methylation in cardiovascular risk and disease: methodological aspects, study design, and data analysis for epidemiological studies. Circ Res. 2016;118:119–131.
    1. Esteller M. Epigenetics in cancer. N Engl J Med. 2008;358:1148–1159.
    1. Komatsu Y., Waku T., Iwasaki N., Ono W., Yamaguchi C., Yanagisawa J. Global analysis of DNA methylation in early-stage liver fibrosis. BMC Med Genomics. 2012;5:5.
    1. Götze S., Schumacher E.C., Kordes C., Häussinger D. Epigenetic changes during hepatic stellate cell activation. PLoS One. 2015;10:e0128745.
    1. El Taghdouini A., Sørensen A.L., Reiner A.H., Coll M., Verhulst S., Mannaerts I., Øie C.I., Smedsrød B., Najimi M., Sokal E., Luttun A., Sancho-Bru P., Collas P., van Grunsven L.A. Genome-wide analysis of DNA methylation and gene expression patterns in purified, uncultured human liver cells and activated hepatic stellate cells. Oncotarget. 2015;6:26729–26745.
    1. Mann J., Chu D.C., Maxwell A., Oakley F., Zhu N.L., Tsukamoto H., Mann D.A. MeCP2 controls an epigenetic pathway that promotes myofibroblast transdifferentiation and fibrosis. Gastroenterology. 2010;138:705–714. 714 e1–e4.
    1. Mann J., Oakley F., Akiboye F., Elsharkawy A., Thorne A.W., Mann D.A. Regulation of myofibroblast transdifferentiation by DNA methylation and MeCP2: implications for wound healing and fibrogenesis. Cell Death Differ. 2007;14:275–285.
    1. Song C., Feodorova Y., Guy J., Peichl L., Jost K.L., Kimura H., Cardoso M.C., Bird A., Leonhardt H., Joffe B., Solovei I. DNA methylation reader MECP2: cell type- and differentiation stage-specific protein distribution. Epigenetics & Chromatin. 2014;7:1–16.
    1. Meehan R.R., Lewis J.D., Bird A.P. Characterization of MeCP2, a vertebrate DNA binding protein with affinity for methylated DNA. Nucleic Acids Res. 1992;20:5085–5092.
    1. Kaludov N.K., Wolffe A.P. MeCP2 driven transcriptional repression in vitro: selectivity for methylated DNA, action at a distance and contacts with the basal transcription machinery. Nucleic Acids Res. 2000;28:1921–1928.
    1. Mellen M., Ayata P., Dewell S., Kriaucionis S., Heintz N. MeCP2 binds to 5hmC enriched within active genes and accessible chromatin in the nervous system. Cell. 2012;151:1417–1430.
    1. Perugorria M.J., Wilson C.L., Zeybel M., Walsh M., Amin S., Robinson S., White S.A., Burt A.D., Oakley F., Tsukamoto H., Mann D.A., Mann J. Histone methyltransferase ASH1 orchestrates fibrogenic gene transcription during myofibroblast transdifferentiation. Hepatology. 2012;56:1129–1139.
    1. Byrd K.N., Shearn A. ASH1, a Drosophila trithorax group protein, is required for methylation of lysine 4 residues on histone H3. Proc Natl Acad Sci U S A. 2003;100:11535–11540.
    1. Page A., Paoli P., Moran Salvador E., White S., French J., Mann J. Hepatic stellate cell transdifferentiation involves genome-wide remodeling of the DNA methylation landscape. J Hepatol. 2016;64:661–673.
    1. Ji D., Lin K., Song J., Wang Y. Effects of Tet-induced oxidation products of 5-methylcytosine on Dnmt1- and DNMT3a-mediated cytosine methylation. Mol Biosyst. 2014;10:1749–1752.
    1. Tahiliani M., Koh K.P., Shen Y., Pastor W.A., Bandukwala H., Brudno Y., Agarwal S., Iyer L.M., Liu D.R., Aravind L., Rao A. Conversion of 5-methylcytosine to 5-hydroxymethylcytosine in mammalian DNA by MLL partner TET1. Science. 2009;324:930–935.
    1. McDonald J.I., Celik H., Rois L.E., Fishberger G., Fowler T., Rees R., Kramer A., Martens A., Edwards J.R., Challen G.A. Reprogrammable CRISPR/Cas9-based system for inducing site-specific DNA methylation. Biol Open. 2016;5:866–874.
    1. Vojta A., Dobrinić P., Tadić V., Bočkor L., Korać P., Julg B., Klasić M., Zoldoš V. Repurposing the CRISPR-Cas9 system for targeted DNA methylation. Nucleic Acids Res. 2016;44:5615–5628.
    1. Zeybel M., Hardy T., Wong Y.K., Mathers J.C., Fox C.R., Gackowska A., Oakley F., Burt A.D., Wilson C.L., Anstee Q.M., Barter M.J., Masson S., Elsharkawy A.M., Mann D.A., Mann J. Multigenerational epigenetic adaptation of the hepatic wound-healing response. Nat Med. 2012;18:1369–1377.
    1. Murphy S.K., Yang H., Moylan C.A., Pang H., Dellinger A., Abdelmalek M.F., Garrett M.E., Ashley-Koch A., Suzuki A., Tillmann H.L., Hauser M.A., Diehl A.M. Relationship between methylome and transcriptome in patients with nonalcoholic fatty liver disease. Gastroenterology. 2013;145:1076–1087.
    1. Zeybel M., Hardy T., Robinson S.M., Fox C., Anstee Q.M., Ness T., Masson S., Mathers J.C., French J., White S., Mann J. Differential DNA methylation of genes involved in fibrosis progression in non-alcoholic fatty liver disease and alcoholic liver disease. Clin Epigenetics. 2015;7:25.
    1. Castera L., Pinzani M. Biopsy and non-invasive methods for the diagnosis of liver fibrosis: does it take two to tango? Gut. 2010;59:861–866.
    1. Hardy T., Zeybel M., Day C.P., Dipper C., Masson S., McPherson S., Henderson E., Tiniakos D., White S., French J., Mann D.A., Anstee Q.M., Mann J. Plasma DNA methylation: a potential biomarker for stratification of liver fibrosis in non-alcoholic fatty liver disease. Gut. 2016 Mar 21 pii: gutjnl-2016-311526. . [Epub ahead of print]
    1. Sun Z., Miller R.A., Patel R.T., Chen J., Dhir R., Wang H., Zhang D., Graham M.J., Unterman T.G., Shulman G.I., Sztalryd C., Bennett M.J., Ahima R.S., Birnbaum M.J., Lazar M.A. Hepatic Hdac3 promotes gluconeogenesis by repressing lipid synthesis and sequestration. Nat Med. 2012;18:934–942.
    1. Liu C., Chen X., Yang L., Kisseleva T., Brenner D.A., Seki E. Transcriptional repression of the transforming growth factor beta (TGF-beta) pseudoreceptor BMP and activin membrane-bound inhibitor (BAMBI) by nuclear factor kappaB (NF-kappaB) p50 enhances TGF-beta signaling in hepatic stellate cells. J Biol Chem. 2014;289:7082–7091.
    1. Pang M., Kothapally J., Mao H., Tolbert E., Ponnusamy M., Chin Y.E., Zhuang S. Inhibition of histone deacetylase activity attenuates renal fibroblast activation and interstitial fibrosis in obstructive nephropathy. Am J Physiol Renal Physiol. 2009;297:F996–F1005.
    1. Diao J.S., Xia W.S., Yi C.G., Wang Y.M., Li B., Xia W., Liu B., Guo S.Z., Sun X.D. Trichostatin A inhibits collagen synthesis and induces apoptosis in keloid fibroblasts. Arch Dermatol Res. 2011;303:573–580.
    1. Davies E.R., Haitchi H.M., Thatcher T.H., Sime P.J., Kottmann R.M., Ganesan A., Packham G., O'Reilly K.M., Davies D.E. Spiruchostatin A inhibits proliferation and differentiation of fibroblasts from patients with pulmonary fibrosis. Am J Respir Cell Mol Biol. 2012;46:687–694.
    1. Kirpich I., Zhang J., Gobejishvili L., Kharebava G., Barker D., Ghare S., Joshi-Barve S., McClain C.J., Barve S. Binge ethanol-induced HDAC3 down-regulates Cpt1alpha expression leading to hepatic steatosis and injury. Alcohol Clin Exp Res. 2013;37:1920–1929.
    1. Liu Y., Wang Z., Wang J., Lam W., Kwong S., Li F., Friedman S.L., Zhou S., Ren Q., Xu Z., Wang X., Ji L., Tang S., Zhang H., Lui E.L., Ye T. A histone deacetylase inhibitor, largazole, decreases liver fibrosis and angiogenesis by inhibiting transforming growth factor-beta and vascular endothelial growth factor signalling. Liver Int. 2013;33:504–515.
    1. Watanabe T., Tajima H., Hironori H., Nakagawara H., Ohnishi I., Takamura H., Ninomiya I., Kitagawa H., Fushida S., Tani T., Fujimura T., Ota T., Wakayama T., Iseki S., Harada S. Sodium valproate blocks the transforming growth factor (TGF)-beta1 autocrine loop and attenuates the TGF-beta1-induced collagen synthesis in a human hepatic stellate cell line. Int J Mol Med. 2011;28:919–925.
    1. Mannaerts I., Nuytten N.R., Rogiers V., Vanderkerken K., van Grunsven L.A., Geerts A. Chronic administration of valproic acid inhibits activation of mouse hepatic stellate cells in vitro and in vivo. Hepatology. 2010;51:603–614.
    1. Elsharkawy A.M., Oakley F., Lin F., Packham G., Mann D.A., Mann J. The NF-kappaB p50:p50:HDAC-1 repressor complex orchestrates transcriptional inhibition of multiple pro-inflammatory genes. J Hepatol. 2010;53:519–527.
    1. Ding N., Hah N., Yu R.T., Sherman M.H., Benner C., Leblanc M., He M., Liddle C., Downes M., Evans R.M. BRD4 is a novel therapeutic target for liver fibrosis. Proc Natl Acad Sci U S A. 2015;112:15713–15718.
    1. Yang M.D., Chiang Y.M., Higashiyama R., Asahina K., Mann D.A., Mann J., Wang C.C., Tsukamoto H. Rosmarinic acid and baicalin epigenetically derepress peroxisomal proliferator-activated receptor gamma in hepatic stellate cells for their antifibrotic effect. Hepatology. 2012;55:1271–1281.
    1. Park P.H., Miller R., Shukla S.D. Acetylation of histone H3 at lysine 9 by ethanol in rat hepatocytes. Biochem Biophys Res Commun. 2003;306:501–504.
    1. James T.T., Aroor A.R., Lim R.W., Shukla S.D. Histone H3 phosphorylation (Ser10, Ser28) and phosphoacetylation (K9S10) are differentially associated with gene expression in liver of rats treated in vivo with acute ethanol. J Pharmacol Exp Ther. 2012;340:237–247.
    1. Ghezzi A., Krishnan H.R., Lew L., Prado F.J., 3rd, Ong D.S., Atkinson N.S. Alcohol-induced histone acetylation reveals a gene network involved in alcohol tolerance. PLoS Genet. 2013;9:e1003986.
    1. Shukla S.D., Lim R.W. Epigenetic effects of ethanol on the liver and gastrointestinal system. Alcohol Research: Current Reviews. 2013;35:47–55.
    1. Shepard B.D., Joseph R.A., Kannarkat G.T., Rutledge T.M., Tuma D.J., Tuma P.L. Alcohol-induced alterations in hepatic microtubule dynamics can be explained by impaired histone deacetylase 6 function. Hepatology. 2008;48:1671–1679.
    1. Kim J.S., Shukla S.D. Histone h3 modifications in rat hepatic stellate cells by ethanol. Alcohol Alcohol. 2005;40:367–372.
    1. Page A., Paoli P.P., Hill S.J., Howarth R., Wu R., Kweon S.M., French J., White S., Tsukamoto H., Mann D.A., Mann J. Alcohol directly stimulates epigenetic modifications in hepatic stellate cells. J Hepatol. 2015;62:388–397.
    1. Lee J., Seok S., Yu P., Kim K., Smith Z., Rivas-Astroza M., Zhong S., Kemper J.K. Genomic analysis of hepatic farnesoid X receptor binding sites reveals altered binding in obesity and direct gene repression by farnesoid X receptor in mice. Hepatology. 2012;56:108–117.
    1. Bysani M., Wallerman O., Bornelöv S., Zatloukal K., Komorowski J., Wadelius C. ChIP-seq in steatohepatitis and normal liver tissue identifies candidate disease mechanisms related to progression to cancer. BMC Med Genomics. 2013;6:50.
    1. He Y., Huang C., Zhang S.P., Sun X., Long X.R., Li J. The potential of microRNAs in liver fibrosis. Cellular Signalling. 2012;24:2268–2272.
    1. Szabo G., Csak T. Role of microRNAs in NAFLD/NASH. Dig Dis Sci. 2016;61:1314–1324.
    1. Teng K.-Y., Ghoshal K. Role of noncoding RNAs as biomarker and therapeutic targets for liver fibrosis. Gene Expression. 2015;16:155–162.
    1. Guo C.J., Pan Q., Cheng T., Jiang B., Chen G.Y., Li D.G. Changes in microRNAs associated with hepatic stellate cell activation status identify signaling pathways. FEBS J. 2009;276:5163–5176.
    1. Chen C., Wu C.Q., Zhang Z.Q., Yao D.K., Zhu L. Loss of expression of miR-335 is implicated in hepatic stellate cell migration and activation. Exp Cell Res. 2011;317:1714–1725.
    1. Noetel A., Elfimova N., Altmüller J., Becker C., Becker D., Lahr W., Nürnberg P., Wasmuth H., Teufel A., Büttner R., Dienes H.P., Odenthal M. Next generation sequencing of the Ago2 interacting transcriptome identified chemokine family members as novel targets of neuronal microRNAs in hepatic stellate cells. J Hepatol. 2013;58:335–341.
    1. Coll M., El Taghdouini A., Perea L., Mannaerts I., Vila-Casadesús M., Blaya D., Rodrigo-Torres D., Affò S., Morales-Ibanez O., Graupera I., Lozano J.J., Najimi M., Sokal E., Lambrecht J., Ginès P., van Grunsven L.A., Sancho-Bru P. Integrative miRNA and gene expression profiling analysis of human quiescent hepatic stellate cells. Sci Rep. 2015;5:11549.
    1. Valadi H., Ekström K., Bossios A., Sjöstrand M., Lee J.J., Lötvall J.O. Exosome-mediated transfer of mRNAs and microRNAs is a novel mechanism of genetic exchange between cells. Nat Cell Biol. 2007;9:654–659.
    1. He L., Hannon G.J. MicroRNAs: small RNAs with a big role in gene regulation. Nat Rev Genet. 2004;5:522–531.
    1. Povero D., Ekström K., Bossios A., Sjöstrand M., Lee J.J., Lötvall J.O. Circulating extracellular vesicles with specific proteome and liver microRNAs are potential biomarkers for liver injury in experimental fatty liver disease. PLoS One. 2014;9:e113651.
    1. Momen-Heravi F., Saha B., Kodys K., Catalano D., Satishchandran A., Szabo G. Increased number of circulating exosomes and their microRNA cargos are potential novel biomarkers in alcoholic hepatitis. J Transl Med. 2015;13:261.
    1. Tryndyak V.P., Latendresse J.R., Montgomery B., Ross S.A., Beland F.A., Rusyn I., Pogribny I.P. Plasma microRNAs are sensitive indicators of inter-strain differences in the severity of liver injury induced in mice by a choline- and folate-deficient diet. Toxicol Appl Pharmacol. 2012;262:52–59.
    1. Bala S., Petrasek J., Mundkur S., Catalano D., Levin I., Ward J., Alao H., Kodys K., Szabo G. Circulating microRNAs in exosomes indicate hepatocyte injury and inflammation in alcoholic, drug-induced, and inflammatory liver diseases. Hepatology. 2012;56:1946–1957.
    1. Roderburg C., Mollnow T., Bongaerts B., Elfimova N., Vargas Cardenas D., Berger K., Zimmermann H., Koch A., Vucur M., Luedde M., Hellerbrand C., Odenthal M., Trautwein C., Tacke F., Luedde T. Micro-RNA profiling in human serum reveals compartment-specific roles of miR-571 and miR-652 in liver cirrhosis. PLoS One. 2012;7:e32999.
    1. Schwimmer J.B., Celedon M.A., Lavine J.E., Salem R., Campbell N., Schork N.J., Shiehmorteza M., Yokoo T., Chavez A., Middleton M.S., Sirlin C.B. Heritability of nonalcoholic fatty liver disease. Gastroenterology. 2009;136:1585–1592.
    1. Brouwers M.C., Cantor R.M., Kono N., Yoon J.L., van der Kallen C.J., Bilderbeek-Beckers M.A., van Greevenbroek M.M., Lusis A.J., de Bruin T.W. Heritability and genetic loci of fatty liver in familial combined hyperlipidemia. J Lipid Res. 2006;47:2799–2807.
    1. Zarrinpar A., Gupta S., Maurya M.R., Subramaniam S., Loomba R. Serum microRNAs explain discordance of non-alcoholic fatty liver disease in monozygotic and dizygotic twins: a prospective study. Gut. 2016;65:1546–1554.
    1. Donkin I., Versteyhe S., Ingerslev L.R., Qian K., Mechta M., Nordkap L., Mortensen B., Appel E.V., Jørgensen N., Kristiansen V.B., Hansen T., Workman C.T., Zierath J.R., Barrès R. Obesity and bariatric surgery drive epigenetic variation of spermatozoa in humans. Cell Metab. 2016;23:369–378.
    1. Heyn H., Esteller M. DNA methylation profiling in the clinic: applications and challenges. Nat Rev Genet. 2012;13:679–692.
    1. Smith Z.D., Meissner A. DNA methylation: roles in mammalian development. Nat Rev Genet. 2013;14:204–220.

Source: PubMed

3
订阅