Pathophysiology and treatment of patients with beta-thalassemia - an update

Eitan Fibach, Eliezer A Rachmilewitz, Eitan Fibach, Eliezer A Rachmilewitz

Abstract

Thalassemia (thal) is an autosomal recessive, hereditary, chronic hemolytic anemia due to a partial or complete deficiency in the synthesis of α-globin chains (α-thal) or β-globin chains (β-thal) that compose the major adult hemoglobin (α 2β 2). It is caused by one or more mutations in the corresponding genes. The unpaired globin chains are unstable; they precipitate intracellularly, resulting in hemolysis, premature destruction of red blood cell [RBC] precursors in the bone marrow, and a short life-span of mature RBCs in the circulation. The state of anemia is treated by frequent RBC transfusions. This therapy results in the accumulation of iron (iron overload), a condition that is exacerbated by the breakdown products of hemoglobin (heme and iron) and the increased iron uptake for the chronic accelerated, but ineffective, RBC production. Iron catalyzes the generation of reactive oxygen species, which in excess are toxic, causing damage to vital organs such as the heart and liver and the endocrine system. Herein, we review recent findings regarding the pathophysiology underlying the major symptoms of β-thal and potential therapeutic modalities for the amelioration of its complications, as well as new modalities that may provide a cure for the disease.

Keywords: Thalessemia; hemolytic anemia; β-globin.

Conflict of interest statement

No competing interests were disclosed.No competing interests were disclosed.No competing interests were disclosed.

Figures

Figure 1.. Beta-thalassemia: causes, symptoms, and therapeutic…
Figure 1.. Beta-thalassemia: causes, symptoms, and therapeutic modalities.
Causes and symptoms are marked in red; therapeutic modalities are marked in blue.

References

    1. Rund D, Rachmilewitz E: Beta-thalassemia. N Engl J Med. 2005;353(11):1135–46. 10.1056/NEJMra050436
    1. Clegg JB, Weatherall DJ: Thalassemia and malaria: new insights into an old problem. Proc Assoc Am Physicians. 1999;111(4):278–82. 10.1046/j.1525-1381.1999.99235.x
    1. Modell B, Darlison M: Global epidemiology of haemoglobin disorders and derived service indicators. Bull World Health Organ. 2008;86(6):480–7. 10.2471/BLT.06.036673
    1. Kan YW, Nathan DG: Mild thalassemia: the result of interactions of alpha and beta thalassemia genes. J Clin Invest. 1970;49(4):635–42. 10.1172/JCI106274
    1. Porter JB, Garbowski M: The pathophysiology of transfusional iron overload. Hematol Oncol Clin North Am. 2014;28(4):683–701, vi. 10.1016/j.hoc.2014.04.003
    1. van de Watering L: Red cell storage and prognosis. Vox Sang. 2011;100(1):36–45. 10.1111/j.1423-0410.2010.01441.x
    1. Kim HO: In-vitro stem cell derived red blood cells for transfusion: are we there yet? Yonsei Med J. 2014;55(2):304–9. 10.3349/ymj.2014.55.2.304
    1. Winslow RM: Red cell substitutes. Semin Hematol. 2007;44(1):51–9. 10.1053/j.seminhematol.2006.09.013
    1. Fibach E, Rachmilewitz EA: The role of antioxidants and iron chelators in the treatment of oxidative stress in thalassemia. Ann N Y Acad Sci. 2010;1202:10–6. 10.1111/j.1749-6632.2010.05577.x
    1. Fibach E, Rachmilewitz EA: Iron overload in hematological disorders. Presse Press,2017;46(12 Pt 2):e296–e305. 10.1016/j.lpm.2017.10.007
    1. Hentze MW, Muckenthaler MU, Andrews NC: Balancing acts: molecular control of mammalian iron metabolism. Cell. 2004;117(3):285–97. 10.1016/S0092-8674(04)00343-5
    1. Hellström-Lindberg E: Management of anemia associated with myelodysplastic syndrome. Semin Hematol. 2005;42(2 Suppl 1):S10–3. 10.1053/j.seminhematol.2005.01.002
    1. Wang J, Pantopoulos K: Regulation of cellular iron metabolism. Biochem J. 2011;434(3):365–81. 10.1042/BJ20101825
    1. Breuer W, Hershko C, Cabantchik ZI: The importance of non-transferrin bound iron in disorders of iron metabolism. Transfus Sci. 2000;23(3):185–92. 10.1016/S0955-3886(00)00087-4
    1. Richardson DR, Ponka P: The molecular mechanisms of the metabolism and transport of iron in normal and neoplastic cells. Biochim Biophys Acta. 1997;1331(1):1–40. 10.1016/S0304-4157(96)00014-7
    1. Prus E, Fibach E: Uptake of non-transferrin iron by erythroid cells. Anemia. 2011;2011: 945289. 10.1155/2011/945289
    1. Konijn AM: Iron metabolism in inflammation. Baillieres Clin Haematol. 1994;7(4):829–49. 10.1016/S0950-3536(05)80127-1
    1. Prus E, Fibach E: The labile iron pool in human erythroid cells. Br J Haematol. 2008;142(2):301–7. 10.1111/j.1365-2141.2008.07192.x
    1. Jacobs A: Low molecular weight intracellular iron transport compounds. Blood. 1977;50(3):433–9.
    1. Jacobs A: An intracellular transit iron pool. Ciba Found Symp. 1976; (51):91–106.
    1. Fibach E, Rachmilewitz E: The role of oxidative stress in hemolytic anemia. Curr Mol Med. 2008;8(7):609–19. 10.2174/156652408786241384
    1. Rombout-Sestrienkova E, van Kraaij MG, Koek GH: How we manage patients with hereditary haemochromatosis. Br J Haematol. 2016;175(5):759–70. 10.1111/bjh.14376
    1. Leitch HA, Fibach E, Rachmilewitz E: Toxicity of iron overload and iron overload reduction in the setting of hematopoietic stem cell transplantation for hematologic malignancies. Crit Rev Oncol Hematol. 2017;113:156–70. 10.1016/j.critrevonc.2017.03.002
    1. Haghpanah S, Zarei T, Zahedi Z, et al. : Compliance and satisfaction with deferasirox (Exjade®) compared with deferoxamine in patients with transfusion-dependent beta-thalassemia. Hematology. 2014;19(4):187–91. 10.1179/1607845413Y.0000000121
    1. Taher AT, Origa R, Perrotta S, et al. : New film-coated tablet formulation of deferasirox is well tolerated in patients with thalassemia or lower-risk MDS: Results of the randomized, phase II ECLIPSE study. Am J Hematol. 2017;92(5):420–8. 10.1002/ajh.24668
    2. F1000 Recommendation

    1. Chuansumrit A, Songdej D, Sirachainan N, et al. : Safety profile of a liquid formulation of deferiprone in young children with transfusion-induced iron overload: a 1-year experience. Paediatr Int Child Health. 2016;36(3):209–13. 10.1179/2046905515Y.0000000040
    2. F1000 Recommendation

    1. Vlachodimitropoulou Koumoutsea E, Garbowski M, Porter J: Synergistic intracellular iron chelation combinations: mechanisms and conditions for optimizing iron mobilization. Br J Haematol. 2015;170(6):874–83. 10.1111/bjh.13512
    1. Li H, Rybicki AC, Suzuka SM, et al. : Transferrin therapy ameliorates disease in beta-thalassemic mice. Nat Med. 2010;16(2):177–82. 10.1038/nm.2073
    2. F1000 Recommendation

    1. Vinchi F, Vercellotti GM, Belcher JD, et al. : Elevated systemic heme and iron levels as risk factor for vascular dysfunction and atherosclerosis: Evidence from a beta-thalassemia cohort study. Atherosclerosis. 2017;263:e107–e108. 10.1016/j.atherosclerosis.2017.06.344
    1. Ganz T, Nemeth E: Hepcidin and iron homeostasis. Biochim Biophys Acta. 2012;1823(9):1434–43. 10.1016/j.bbamcr.2012.01.014
    1. Gardenghi S, Marongiu MF, Ramos P, et al. : Ineffective erythropoiesis in beta-thalassemia is characterized by increased iron absorption mediated by down-regulation of hepcidin and up-regulation of ferroportin. Blood. 2007;109(11):5027–35. 10.1182/blood-2006-09-048868
    2. F1000 Recommendation

    1. De Franceschi L, Daraio F, Filippini A, et al. : Liver expression of hepcidin and other iron genes in two mouse models of beta-thalassemia. Haematologica. 2006;91(10):1336–42.
    1. Tanno T, Bhanu NV, Oneal PA, et al. : High levels of GDF15 in thalassemia suppress expression of the iron regulatory protein hepcidin. Nat Med. 2007;13(9):1096–101. 10.1038/nm1629
    1. Gu S, Song X, Zhao Y, et al. : The evaluation of iron overload through hepcidin level and its related factors in myelodysplastic syndromes. Hematology. 2013;18(5):286–94. 10.1179/1607845412Y.0000000064
    1. Fertrin KY, Lanaro C, Franco-Penteado CF, et al. : Erythropoiesis-driven regulation of hepcidin in human red cell disorders is better reflected through concentrations of soluble transferrin receptor rather than growth differentiation factor 15. Am J Hematol. 2014;89(4):385–90. 10.1002/ajh.23649
    1. Kautz L, Jung G, Valore EV, et al. : Identification of erythroferrone as an erythroid regulator of iron metabolism. Nat Genet. 2014;46(7):678–84. 10.1038/ng.2996
    1. Choi SO, Cho YS, Kim HL, et al. : ROS mediate the hypoxic repression of the hepcidin gene by inhibiting C/EBPalpha and STAT-3. Biochem Biophys Res Commun. 2007;356(7):312–7. 10.1016/j.bbrc.2007.02.137
    1. Miura K, Taura K, Kodama Y, et al. : Hepatitis C virus-induced oxidative stress suppresses hepcidin expression through increased histone deacetylase activity. Hepatology. 2008;48(5):1420–9. 10.1002/hep.22486
    1. Peyssonnaux C, Zinkernagel AS, Schuepbach RA, et al. : Regulation of iron homeostasis by the hypoxia-inducible transcription factors (HIFs). J Clin Invest. 2007;117(7):1926–32. 10.1172/JCI31370
    2. F1000 Recommendation

    1. Fraenkel PG: Anemia of Inflammation: A Review. Med Clin North Am. 2017;101(2):285–96. 10.1016/j.mcna.2016.09.005
    1. Preza GC, Ruchala P, Pinon R, et al. : Minihepcidins are rationally designed small peptides that mimic hepcidin activity in mice and may be useful for the treatment of iron overload. J Clin Invest. 2011;121(12):4880–8. 10.1172/JCI57693
    1. Nai A, Pagani A, Mandelli G, et al. : Deletion of TMPRSS6 attenuates the phenotype in a mouse model of β-thalassemia. Blood. 2012;119(21):5021–9. 10.1182/blood-2012-01-401885
    2. F1000 Recommendation

    1. Kautz L, Jung G, Du X, et al. : Erythroferrone contributes to hepcidin suppression and iron overload in a mouse model of β-thalassemia. Blood. 2015;126(17):2031–7. 10.1182/blood-2015-07-658419
    2. F1000 Recommendation

    1. Dussiot M, Maciel TT, Fricot A, et al. : An activin receptor IIA ligand trap corrects ineffective erythropoiesis in β-thalassemia. Nat Med. 2014;20(4):398–407. 10.1038/nm.3468
    2. F1000 Recommendation

    1. Motta I, Scaramellini N, Cappellini MD: Investigational drugs in phase I and phase II clinical trials for thalassemia. Expert Opin Investig Drugs. 2017;26(7):793–802. 10.1080/13543784.2017.1335709
    1. Libani IV, Guy EC, Melchiori L, et al. : Decreased differentiation of erythroid cells exacerbates ineffective erythropoiesis in beta-thalassemia. Blood. 2008;112(3):875–85. 10.1182/blood-2007-12-126938
    1. Savona MR: Are we altering the natural history of primary myelofibrosis? Leuk Res. 2014;38(9):1004–12. 10.1016/j.leukres.2014.04.012
    1. Casu C, Oikonomidou PR, Lo Presti V, et al. : POTENTIAL THERAPEUTIC APPLICATIONS OF JAK2 INHIBITORS AND HIF2a-ASO FOR THE TREATMENT OF beta-THALASSEMIA INTERMEDIA AND MAJOR. Am J Hematol. 2017;92:E221–E221.
    1. Walters RW, Parker R: Coupling of Ribostasis and Proteostasis: Hsp70 Proteins in mRNA Metabolism. Trends Biochem Sci. 2015;40(10):552–9. 10.1016/j.tibs.2015.08.004
    1. Ribeil J, Zermati Y, Vandekerckhove J, et al. : Hsp70 regulates erythropoiesis by preventing caspase-3-mediated cleavage of GATA-1. Nature. 2007;445(7123):102–5. 10.1038/nature05378
    1. Arlet JB, Ribeil JA, Guillem F, et al. : HSP70 sequestration by free α-globin promotes ineffective erythropoiesis in β-thalassaemia. Nature. 2014;514(7521):242–6. 10.1038/nature13614
    2. F1000 Recommendation

    1. Guillem F, Dussiot M, Causse S, et al. : XPO1 (Exportin-1) Is a Major Regulator of Human Erythroid Differentiation. Potential Clinical Applications to Decrease Ineffective Erythropoiesis of Beta-Thalassemia. Blood. 2015;126(23):2368
    1. Quek L, Thein SL: Molecular therapies in beta-thalassaemia. Br J Haematol. 2007;136(3):353–65. 10.1111/j.1365-2141.2006.06408.x
    1. Mettananda S, Gibbons RJ, Higgs DR: Understanding α-globin gene regulation and implications for the treatment of β-thalassemia. Ann N Y Acad Sci. 2016;1368(1):16–24. 10.1111/nyas.12988
    1. Mettananda S, Fisher CA, Sloane-Stanley JA, et al. : Selective silencing of α-globin by the histone demethylase inhibitor IOX1: a potentially new pathway for treatment of β-thalassemia. Haematologica. 2017;102(3):e80–e84. 10.3324/haematol.2016.155655
    2. F1000 Recommendation

    1. Khemayanto H, Shi B: Role of Mediterranean diet in prevention and management of type 2 diabetes. Chin Med J (Engl). 2014;127(20):3651–6.
    1. Hu X, Wang H, Lv X, et al. : Cardioprotective Effects of Tannic Acid on Isoproterenol-Induced Myocardial Injury in Rats: Further Insight into 'French Paradox'. Phytother Res. 2015;29(9):1295–1303. 10.1002/ptr.5376
    2. F1000 Recommendation

    1. Bank A: Regulation of human fetal hemoglobin: new players, new complexities. Blood. 2006;107(2):435–43. 10.1182/blood-2005-05-2113
    1. Marinkovic D, Zhang X, Yalcin S, et al. : Foxo3 is required for the regulation of oxidative stress in erythropoiesis. J Clin Invest. 2007;117(8):2133–44. 10.1172/JCI31807
    2. F1000 Recommendation

    1. Wang H, Li Y, Wang S, et al. : Knockdown of transcription factor forkhead box O3 (FOXO3) suppresses erythroid differentiation in human cells and zebrafish. Biochem Biophys Res Commun. 2015;460(4):923–30. 10.1016/j.bbrc.2015.03.128
    2. F1000 Recommendation

    1. Zhang X, Campreciós G, Rimmelé P, et al. : FOXO3-mTOR metabolic cooperation in the regulation of erythroid cell maturation and homeostasis. Am J Hematol. 2014;89(10):954–63. 10.1002/ajh.23786
    2. F1000 Recommendation

    1. Pecoraro A, Troia A, Calzolari R, et al. : Efficacy of Rapamycin as Inducer of Hb F in Primary Erythroid Cultures from Sickle Cell Disease and β-Thalassemia Patients. Hemoglobin. 2015;39(4):225–9. 10.3109/03630269.2015.1036882
    2. F1000 Recommendation

    1. Franco SS, De Falco L, Ghaffari S, et al. : Resveratrol accelerates erythroid maturation by activation of FoxO3 and ameliorates anemia in beta-thalassemic mice. Haematologica. 2014;99(2):267–75. 10.3324/haematol.2013.090076
    2. F1000 Recommendation

    1. Liang R, Campreciós G, Bigarella C, et al. : Loss of Foxo3 reduces erythroblast apoptosis and enhances RBC production in beta-thalassemic mice. Blood. 2015;126(23):756
    1. Donnelly N, Gorman AM, Gupta S, et al. : The eIF2α kinases: their structures and functions. Cell Mol Life Sci. 2013;70(19):3493–511. 10.1007/s00018-012-1252-6
    1. Chen JJ: Translational control by heme-regulated eIF2α kinase during erythropoiesis. Curr Opin Hematol. 2014;21(3):172–8. 10.1097/MOH.0000000000000030
    1. Suragani RN, Zachariah RS, Velazquez JG, et al. : Heme-regulated eIF2α kinase activated Atf4 signaling pathway in oxidative stress and erythropoiesis. Blood. 2012;119(22):5276–84. 10.1182/blood-2011-10-388132
    1. Han AP, Fleming MD, Chen JJ: Heme-regulated eIF2alpha kinase modifies the phenotypic severity of murine models of erythropoietic protoporphyria and beta-thalassemia. J Clin Invest. 2005;115(6):1562–70. 10.1172/JCI24141
    1. Hahn CK, Lowrey CH: Induction of fetal hemoglobin through enhanced translation efficiency of γ-globin mRNA. Blood. 2014;124(17):2730–4. 10.1182/blood-2014-03-564302
    2. F1000 Recommendation

    1. De Franceschi L, Bertoldi M, De Falco L, et al. : Oxidative stress modulates heme synthesis and induces peroxiredoxin-2 as a novel cytoprotective response in β-thalassemic erythropoiesis. Haematologica. 2011;96(11):1595–604. 10.3324/haematol.2011.043612
    1. Matte A, De Falco L, Iolascon A, et al. : The Interplay Between Peroxiredoxin-2 and Nuclear Factor-Erythroid 2 Is Important in Limiting Oxidative Mediated Dysfunction in β-Thalassemic Erythropoiesis. Antioxid Redox Signal. 2015;23(16):1284–97. 10.1089/ars.2014.6237
    2. F1000 Recommendation

    1. Pittalà V, Salerno L, Romeo G, et al. : A focus on heme oxygenase-1 (HO-1) inhibitors. Curr Med Chem. 2013;20(30):3711–32. 10.2174/0929867311320300003
    1. Santos DG, Mikhael M, Rivella S, et al. : Heme Oxygenase 1 Plays a Role In The Pathophysiology Of beta-Thalassemia. Blood. 2015;122.
    1. Weatherall DJ: Mechanisms for the heterogeneity of the thalassemias. IJPHO. 1997;4:3–10.
    1. Sripichai O, Fucharoen S: Fetal hemoglobin regulation in β-thalassemia: heterogeneity, modifiers and therapeutic approaches. Expert Rev Hematol. 2016;9(12):1129–37. 10.1080/17474086.2016.1255142
    1. Gambari R, Fibach E: Medicinal chemistry of fetal hemoglobin inducers for treatment of beta-thalassemia. Curr Med Chem. 2007;14(2):199–212. 10.2174/092986707779313318
    1. Fucharoen S, Inati A, Siritanaratku N, et al. : A randomized phase I/II trial of HQK-1001, an oral fetal globin gene inducer, in β-thalassaemia intermedia and HbE/β-thalassaemia. Br J Haematol. 2013;161(4):587–93. 10.1111/bjh.12304
    2. F1000 Recommendation

    1. Smith EC, Orkin SH: Hemoglobin genetics: recent contributions of GWAS and gene editing. Hum Mol Genet. 2016;25(R2):R99–R105. 10.1093/hmg/ddw170
    1. Wilber A, Hargrove PW, Kim YS, et al. : Therapeutic levels of fetal hemoglobin in erythroid progeny of β-thalassemic CD34 + cells after lentiviral vector-mediated gene transfer. Blood. 2011;117(10):2817–26. 10.1182/blood-2010-08-300723
    1. Costa FC, Fedosyuk H, Chazelle AM, et al. : Mi2β is required for γ-globin gene silencing: temporal assembly of a GATA-1-FOG-1-Mi2 repressor complex in β-YAC transgenic mice. PLoS Genet. 2012;8(12):e1003155. 10.1371/journal.pgen.1003155
    1. Lulli V, Romania P, Morsilli O, et al. : MicroRNA-486-3p regulates γ-globin expression in human erythroid cells by directly modulating BCL11A. PLoS One. 2013;8(4):e60436. 10.1371/journal.pone.0060436
    2. F1000 Recommendation

    1. Guda S, Brendel C, Renella R, et al. : miRNA-embedded shRNAs for Lineage-specific BCL11A Knockdown and Hemoglobin F Induction. Mol Ther. 2015;23(9):1465–74. 10.1038/mt.2015.113
    2. F1000 Recommendation

    1. Guo SL, Aghajan M, Casu C, et al. : Targeting TMPRSS6 Using Antisense Technology for the Treatment of Beta-Thalassemia. Blood. 2015;126(23):753
    1. Peralta R, Low A, Kim A, et al. : Targeting BCL11A and KLF1 For The Treatment Of Sickle Cell Disease and beta-Thalassemia In Vitro using Antisense Oligonucleotides. Blood. 2013;122(21):1022
    1. Tallack MR, Perkins AC: KLF1 directly coordinates almost all aspects of terminal erythroid differentiation. IUBMB Life. 2010;62(12):886–90. 10.1002/iub.404
    1. Esteghamat F, Gillemans N, Bilic I, et al. : Erythropoiesis and globin switching in compound Klf1::Bcl11a mutant mice. Blood. 2013;121(13):2553–62. 10.1182/blood-2012-06-434530
    1. McNutt M: Breakthrough to genome editing. Science. 2015;350(6267):1445. 10.1126/science.aae0479
    1. Reik A, Chang K, Vierstra J, et al. : 53. From GWAS To the Clinic: Genome-Editing the Human BCL11A Erythroid Enhancer for Fetal Globin Elevation in the Hemoglobinopathies. Molecular Therapy. 2015;23(Supplement 1):S23–S24. 10.1016/S1525-0016(16)33658-9
    2. F1000 Recommendation

    1. Bauer DE, Canver MC, Smith EC, et al. : Crispr-Cas9 Saturating Mutagenesis Reveals an Achilles Heel in the BCL11A Erythroid Enhancer for Fetal Hemoglobin Induction (by Genome Editing). Blood. 2015;126(23):638
    1. Vierstra J, Reik A, Chang K, et al. : Functional footprinting of regulatory DNA. Nat Methods. 2015;12(10):927–30. 10.1038/nmeth.3554
    2. F1000 Recommendation

    1. Breda L, Motta I, Lourenco S, et al. : Forced chromatin looping raises fetal hemoglobin in adult sickle cells to higher levels than pharmacologic inducers. Blood. 2016;128(8):1139–43. 10.1182/blood-2016-01-691089
    2. F1000 Recommendation

    1. Deng W, Rupon JW, Krivega I, et al. : Reactivation of developmentally silenced globin genes by forced chromatin looping. Cell. 2014;158(4):849–60. 10.1016/j.cell.2014.05.050
    2. F1000 Recommendation

    1. Cavazzana M, Ribeil JA, Payen E, et al. : Outcomes of Gene Therapy for Severe Sickle Disease and Beta-Thalassemia Major Via Transplantation of Autologous Hematopoietic Stem Cells Transduced Ex Vivo with a Lentiviral Beta AT87Q-Globin Vector. Blood. 2015;126(23):202
    1. Walters MC, Rasko J, Hongeng S, et al. : Update of Results from the Northstar Study (HGB-204): A Phase 1/2 Study of Gene Therapy for Beta-Thalassemia Major Via Transplantation of Autologous Hematopoietic Stem Cells Transduced Ex-Vivo with a Lentiviral Beta AT87Q-Globin Vector (LentiGlobin BB305 Drug Product). Blood. 2015;126(23):201
    1. Marktel S, Giglio F, Cicalese MP, et al. : A Phase I/Ii Study of Autologous Hematopoietic Stem Cells Genetically Modified with Globe Lentiviral Vector for the Treatment of Transfusion Dependent Beta-Thalassemia. Haematologica. 2016;101:168–168.
    1. Ma N, Liao B, Zhang H, et al. : Transcription activator-like effector nuclease (TALEN)-mediated gene correction in integration-free β-thalassemia induced pluripotent stem cells. J Biol Chem. 2013;288(48):34671–9. 10.1074/jbc.M113.496174
    1. Lucarelli G, Isgrò A, Sodani P, et al. : Hematopoietic stem cell transplantation in thalassemia and sickle cell anemia. Cold Spring Harb Perspect Med. 2012;2(5):a011825. 10.1101/cshperspect.a011825
    1. Angelucci E, Matthes-Martin S, Baronciani D, et al. : Hematopoietic stem cell transplantation in thalassemia major and sickle cell disease: indications and management recommendations from an international expert panel. Haematologica. 2014;99(5):811–20. 10.3324/haematol.2013.099747
    2. F1000 Recommendation

    1. Goussetis E, Peristeri I, Kitra V, et al. : HLA-matched sibling stem cell transplantation in children with β-thalassemia with anti-thymocyte globulin as part of the preparative regimen: the Greek experience. Bone Marrow Transplant. 2012;47(8):1061–6. 10.1038/bmt.2011.219
    1. Gaziev J, De Angelis G, Isgro A, et al. : Transplant Outcomes in High-Risk (Class 3) Patients with Thalassemia Treated with a Modified Protocol Are Equivalent to Low/Intermediate-Risk (Class 1/Class 2) Patients. Blood. 2015;126:620
    1. King AA, Kamani N, Bunin N, et al. : Successful matched sibling donor marrow transplantation following reduced intensity conditioning in children with hemoglobinopathies. Am J Hematol. 2015;90(12):1093–8. 10.1002/ajh.24183
    2. F1000 Recommendation

    1. Mohanan EP, Panetta JC, Royan SSB, et al. : Population Pharmacokinetics of Fludarabine and Treosulfan in Patients with Thalassemia Undergoing Hematopoietic Stem Cell Transplantation. Blood. 2015;126(23):3120
    1. Giambona A, Leto F, Damiani G, et al. : Identification of embryo-fetal cells in celomic fluid using morphological and short-tandem repeats analysis. Prenat Diagn. 2016;36(10):973–978. 10.1002/pd.4922
    1. Li DZ, Yang YD: Invasive prenatal diagnosis of fetal thalassemia. Best Pract Res Clin Obstet Gynaecol. 2017;39:41–52. 10.1016/j.bpobgyn.2016.10.011
    1. Hudecova I, Chiu RW: Non-invasive prenatal diagnosis of thalassemias using maternal plasma cell free DNA. Best Pract Res Clin Obstet Gynaecol. 2017;39:63–73. 10.1016/j.bpobgyn.2016.10.016
    1. Traeger-Synodinos J: Pre-implantation genetic diagnosis. Best Pract Res Clin Obstet Gynaecol. 2017;39:74–88. 10.1016/j.bpobgyn.2016.10.010

Source: PubMed

3
订阅