Obesity and inflammation and the effect on the hematopoietic system

Bruno Deltreggia Benites, Simone Cristina Olenscki Gilli, Sara Teresinha Olalla Saad, Bruno Deltreggia Benites, Simone Cristina Olenscki Gilli, Sara Teresinha Olalla Saad

Abstract

Bone marrow is organized in specialized microenvironments known as 'marrow niches'. These are important for the maintenance of stem cells and their hematopoietic progenitors whose homeostasis also depends on other cell types present in the tissue. Extrinsic factors, such as infection and inflammatory states, may affect this system by causing cytokine dysregulation (imbalance in cytokine production) and changes in cell proliferation and self-renewal rates, and may also induce changes in the metabolism and cell cycle. Known to relate to chronic inflammation, obesity is responsible for systemic changes that are best studied in the cardiovascular system. Little is known regarding the changes in the hematopoietic system induced by the inflammatory state carried by obesity or the cell and molecular mechanisms involved. The understanding of the biological behavior of hematopoietic stem cells under obesity-induced chronic inflammation could help elucidate the pathophysiological mechanisms involved in other inflammatory processes, such as neoplastic diseases and bone marrow failure syndromes.

Keywords: Hematopoietic system; Inflammation; Obesity.

References

    1. Molofsky A.V., Pardal R., Morrison S.J. Diverse mechanisms regulate stem cell self-renewal. Curr Opin Cell Biol. 2004;16:700–707.
    1. Morrison S.J., Spradling A.C. Stem cells and niches: mechanisms that promote stem cell maintenance throughout life. Cell. 2008;132:598–611.
    1. Yamazaki S., Iwama A., Takayanagi S., Eto K., Ema H., Nakauchi H. TGF-beta as a candidate bone marrow niche signal to induce hematopoietic stem cell hibernation. Blood. 2009;113:1250–1256.
    1. Wilson A., Laurenti E., Oser G., van der Wath R.C., Blanco-Bose W., Jaworski M. Hematopoietic stem cells reversibly switch from dormancy to self-renewal during homeostasis and repair. Cell. 2008;135:1118–1129.
    1. Omatsu Y., Sugiyama T., Kohara H., Kondoh G., Fujii N., Kohno K. The essential functions of adipo-osteogenic progenitors as the hematopoietic stem and progenitor cell niche. Immunity. 2010;33:387–399.
    1. Arai F., Hirao A., Ohmura M., Sato H., Matsuoka S., Takubo K. Tie2/angiopoietin-1 signaling regulates hematopoietic stem cell quiescence in the bone marrow niche. Cell. 2004;118:149–161.
    1. Zipori D., Duksin D., Tamir M., Argaman A., Toledo J., Malik Z. Cultured mouse marrow stromal cell lines. II. Distinct subtypes differing in morphology, collagen types, myelopoietic factors, and leukemic cell growth modulating activities. J Cell Physiol. 1985;122:81–90.
    1. Zhang J., Niu C., Ye L., Huang H., He X., Tong W.G. Identification of the haematopoietic stem cell niche and control of the niche size. Nature. 2003;425:836–841.
    1. Kiel M.J., Yilmaz O.H., Iwashita T., Terhorst C., Morrison S.J. SLAM family receptors distinguish hematopoietic stem and progenitor cells and reveal endothelial niches for stem cells. Cell. 2005;121:1109–1121.
    1. Sugiyama T., Kohara H., Noda M., Nagasawa T. Maintenance of the hematopoietic stem cell pool by CXCL12-CXCR4 chemokine signaling in bone marrow stromal cell niches. Immunity. 2006;25:977–988.
    1. Nagasawa T. The chemokine CXCL12 and regulation of HSC and B lymphocyte development in the bone marrow niche. Adv Exp Med Biol. 2007;602:69–75.
    1. Hayashi S., Yamada T., Tsuneto M., Yamane T., Takahashi M., Shultz L.D. Distinct osteoclast precursors in the bone marrow and extramedullary organs characterized by responsiveness to Toll-like receptor ligands and TNF-alpha. J Immunol. 2003;171:5130–5139.
    1. Christopher M.J., Liu F., Hilton M.J., Long F., Link D.C. Suppression of CXCL12 production by bone marrow osteoblasts is a common and critical pathway for cytokine-induced mobilization. Blood. 2009;114:1331–1339.
    1. Chen C., Liu Y., Zheng P. Mammalian target of rapamycin activation underlies HSC defects in autoimmune disease and inflammation in mice. J Clin Invest. 2010;120:4091–4101.
    1. Baldridge M.T., King K.Y., Boles N.C., Weksberg D.C., Goodell M.A. Quiescent haematopoietic stem cells are activated by IFN-gamma in response to chronic infection. Nature. 2010;465:793–797.
    1. Zeng W., Miyazato A., Chen G., Kajigaya S., Young N.S., Maciejewski J.P. Interferon-gamma-induced gene expression in CD34 cells: identification of pathologic cytokine-specific signature profiles. Blood. 2006;107:167–175.
    1. Selleri C., Sato T., Anderson S., Young N.S., Maciejewski J.P. Interferon-gamma and tumor necrosis factor-alpha suppress both early and late stages of hematopoiesis and induce programmed cell death. J Cell Physiol. 1995;165:538–546.
    1. Ferrante A.W., Jr. Obesity-induced inflammation: a metabolic dialogue in the language of inflammation. J Intern Med. 2007;262:408–414.
    1. Hevener A.L., Febbraio M.A. The 2009 stock conference report: inflammation, obesity and metabolic disease. Obes Rev. 2010;11:635–644.
    1. Hotamisligil G.S. Inflammation and metabolic disorders. Nature. 2006;444:860–867.
    1. Bluher M. The distinction of metabolically ’healthy’ from ’unhealthy’ obese individuals. Curr Opin Lipidol. 2010;21:38–43.
    1. Cortez M., Carmo L.S., Rogero M.M., Borelli P., Fock R.A. A high-fat diet increases IL-1, IL-6, and TNF-alpha production by increasing NF-kappaB and attenuating PPAR-gamma expression in bone marrow mesenchymal stem cells. Inflammation. 2013;36:379–386.
    1. do Carmo L.S., Rogero M.M., Paredes-Gamero E.J., Nogueira- Pedro A., Xavier J.G., Cortez M. A high-fat diet increases interleukin-3 and granulocyte colony-stimulating factor production by bone marrow cells and triggers bone marrow hyperplasia and neutrophilia in Wistar rats. Exp Biol Med (Maywood). 2013;238:375–384.
    1. Nanji A.A., Freeman J.B. Relationship between body weight and total leukocyte count in morbid obesity. Am J Clin Pathol. 1985;84:346–347.
    1. Pratley R.E., Wilson C., Bogardus C. Relation of the white blood cell count to obesity and insulin resistance: effect of race and gender. Obes Res. 1995;3:563–571.
    1. Yanoff L.B., Menzie C.M., Denkinger B., Sebring N.G., McHugh T., Remaley A.T. Inflammation and iron deficiency in the hypoferremia of obesity. Int J Obes (Lond). 2007;31:1412–1419.
    1. Vuppalanchi R., Troutt J.S., Konrad R.J., Ghabril M., Saxena R., Bell L.N. Serum hepcidin levels are associated with obesity but not liver disease. Obesity (Silver Spring). 2014;22:836–841.
    1. Chung B., Matak P., McKie A.T., Sharp P. Leptin increases the expression of the iron regulatory hormone hepcidin in HuH7 human hepatoma cells. J Nutr. 2007;137:2366–2370.
    1. Ganz T. Hepcidin--a regulator of intestinal iron absorption and iron recycling by macrophages. Best Pract Res Clin Haematol. 2005;18:171–182.
    1. Chen M., Krishnamurthy A., Mohamed A.R., Green R. Hematological disorders following gastric bypass surgery: emerging concepts of the interplay between nutritional deficiency and inflammation. Biomed Res Int. 2013;2013:205467.
    1. von Drygalski A., Andris D.A., Nuttleman P.R., Jackson S., Klein J., Wallace J.R. Anemia after bariatric surgery cannot be explained by iron deficiency alone: results of a large cohort study. Surg Obes Relat Dis. 2011;7:151–156.
    1. Dallal R.M., Leighton J., Trang A. Analysis of leukopenia and anemia after gastric bypass surgery. Surg Obes Relat Dis. 2012;8:164–168.
    1. Parmar K., Mauch P., Vergilio J.A., Sackstein R., Down J.D. Distribution of hematopoietic stem cells in the bone marrow according to regional hypoxia. Proc Natl Acad Sci U S A. 2007;104:5431–5436.
    1. Danet G.H., Pan Y., Luongo J.L., Bonnet D.A., Simon M.C. Expansion of human SCID-repopulating cells under hypoxic conditions. J Clin Invest. 2003;112:126–135.
    1. Eliasson P., Jonsson J.I. The hematopoietic stem cell niche: low in oxygen but a nice place to be. J Cell Physiol. 2010;222:17–22.
    1. Simsek T., Kocabas F., Zheng J., Deberardinis R.J., Mahmoud A.I., Olson E.N. The distinct metabolic profile of hematopoietic stem cells reflects their location in a hypoxic niche. Cell Stem Cell. 2010;7:380–390.
    1. Patten D.A., Germain M., Kelly M.A., Slack R.S. Reactive oxygen species: stuck in the middle of neurodegeneration. J Alzheimers Dis. 2010;20(Suppl 2):S357–S367.
    1. Ando K., Fujita T. Metabolic syndrome and oxidative stress. Free Radic Biol Med. 2009;47:213–218.
    1. Jang Y.Y., Sharkis S.J. A low level of reactive oxygen species selects for primitive hematopoietic stem cells that may reside in the low-oxygenic niche. Blood. 2007;110:3056–3063.
    1. Warburg O. On respiratory impairment in cancer cells. Science. 1956;124:269–270.
    1. DeBerardinis R.J., Lum J.J., Hatzivassiliou G., Thompson C.B. The biology of cancer: metabolic reprogramming fuels cell growth and proliferation. Cell Metab. 2008;7:11–20.
    1. Gatenby R.A., Gillies R.J. Why do cancers have high aerobic glycolysis? Nat Rev Cancer. 2004;4:891–899.
    1. Almeida A., Moncada S., Bolanos J.P. Nitric oxide switches on glycolysis through the AMP protein kinase and 6-phosphofructo-2-kinase pathway. Nat Cell Biol. 2004;6:45–51.
    1. Motoshima H., Goldstein B.J., Igata M., Araki E. AMPK and cell proliferation--AMPK as a therapeutic target for atherosclerosis and cancer. J Physiol. 2006;574(Pt 1):63–71.
    1. Marsin A.S., Bertrand L., Rider M.H., Deprez J., Beauloye C., Vincent M.F. Phosphorylation and activation of heart PFK-2 by AMPK has a role in the stimulation of glycolysis during ischaemia. Curr Biol. 2000;10:1247–1255.
    1. Wang G.L., Jiang B.H., Rue E.A., Semenza G.L. Hypoxia-inducible factor 1 is a basic-helix-loop-helix-PAS heterodimer regulated by cellular O2 tension. Proc Natl Acad Sci U S A. 1995;92:5510–5514.
    1. Semenza G.L. Hypoxia-inducible factor 1: regulator of mitochondrial metabolism and mediator of ischemic preconditioning. Biochim Biophys Acta. 1813;2011:1263–1268.

Source: PubMed

3
订阅