Novel Isoprene Sensor for a Flu Virus Breath Monitor

Pelagia-Irene Gouma, Lisheng Wang, Sanford R Simon, Milutin Stanacevic, Pelagia-Irene Gouma, Lisheng Wang, Sanford R Simon, Milutin Stanacevic

Abstract

A common feature of the inflammatory response in patients who have actually contracted influenza is the generation of a number of volatile products of the alveolar and airway epithelium. These products include a number of volatile organic compounds (VOCs) and nitric oxide (NO). These may be used as biomarkers to detect the disease. A portable 3-sensor array microsystem-based tool that can potentially detect flu infection biomarkers is described here. Whether used in connection with in-vitro cell culture studies or as a single exhale breathalyzer, this device may be used to provide a rapid and non-invasive screening method for flu and other virus-based epidemics.

Keywords: flu virus detection; health; sensors.

Conflict of interest statement

The authors declare no conflict of interest.

Figures

Figure 1
Figure 1
Morphology and structure of h-WO3 powders: (a) TEM image; (b) HRTEM image (inset: SAED) of nanoparticles; (c) TEM image; (d) HRTEM image (inset: SAED) of nanorods.
Figure 2
Figure 2
Resistance change of h-WO3 with exposure to NO, NO2, methanol, and isoprene at 350 °C.
Figure 3
Figure 3
(a) A single sensor readout circuit with Bluetooth module; (b) A three-sensor system with integrated readout and heater control circuit as a step toward wireless handheld multi-sensor breathalyzer.

References

    1. CDC: Flu Activity Expands. [(accessed on 2 January 2017)]; Available online: .
    1. Weekly US Influenza Surveillance Report. [(accessed on 2 January 2017)]; Available online: .
    1. Sanchez A., Lukwiya M., Bausch D., Mahanty S., Sanchez A.J., Wagoner K.D., Rollin P.E. Analysis of Human Peripheral Blood Samples from Fatal and Nonfatal Cases of Ebola (Sudan) Hemorragic Fever: Cellular Responses, Virus Load, and Nitric Oxide Levels. J. Virol. 2004;78:10370–10377. doi: 10.1128/JVI.78.19.10370-10377.2004.
    1. Mashir A., Paschke K.M., van Duin D., Shreshta N.K., Laskowski D., Storer M.K., Yen-Lieberman B., Gordon S., Aytekin M., Dweik R.A. Effect of influenza A (H1N1) live attenuated intranasal vaccine on nitric oxide (FENO) and other volatiles in exhaled breath. J. Breath Res. 2011;5:037107. doi: 10.1088/1752-7155/5/3/037107.
    1. Phillips M., Cataneo R.N., Chaturvedi A., Danaher P.J., Devadiga A., Legendre D.A., Nail K.L., Schmitt P., Wai J. Effect of influenza vaccination on oxidative stress products in breath. J. Breath Res. 2010;4:026001. doi: 10.1088/1752-7155/4/2/026001.
    1. Schivo M., Aksenov A.A., Linderholm A.L., McCartney M.M., Simmons J., Harper R.W., Davis C.E. Volatile emanations from in vitro airway cells infected with human rhinovirus. J. Breath Res. 2014;8:037110. doi: 10.1088/1752-7155/8/3/037110.
    1. Gouma P., Prasad A., Stanacevic M. A Selective Nanosensor Device for Exhaled Breath Analysis. J. Breath Res. 2011;5:037110. doi: 10.1088/1752-7155/5/3/037110.
    1. Gouma P.I., Prasad A.K., Iyer K.K. Selective Nanoprobes for ‘Signaling Gases’. Nanotechnology. 2006;17:S48–S53. doi: 10.1088/0957-4484/17/4/008.
    1. Gouma P., Kalyanasundaram K., Yun X., Stanacevic M., Wang L. Chemical sensor and breath analyzer for ammonia detection in exhaled human breath. IEEE Sens. 2010;10:49–53. doi: 10.1109/JSEN.2009.2036050.
    1. Wang L., Kalyanasundaram K., Stanacevic M., Gouma P. Nanosensor Device for Breath Acetone Detection. Sens. Lett. 2010;8:709–712. doi: 10.1166/sl.2010.1334.
    1. Gouma P. Nanoscale Polymorphic Oxides for Selective Chemosensors. Sci. Adv. Mater. 2011;3:787–793. doi: 10.1166/sam.2011.1204.
    1. Gouma P.I. Controlling Gas Selectivity through Polyorphic Selection for Metal Oxide Chemical Detectors. Chem. Sens. 2004;20(Suppl. B):186–187.
    1. Gouma P., Stanacevic M., Simon S. An overview of the translation of selective semiconducting gas sensors from first results to automotive exhaust gas monitors to a platform for breath-based diagnostics. Transl. Mater. Res. 2015;2:045001. doi: 10.1088/2053-1613/2/4/045001.
    1. Gouma P.I. Nanostructured Polymorphic Oxides for Advanced Chemosensors. Rev. Adv. Mater. Sci. 2003;5:123–138.
    1. Wang L., Gouma P. Selective Microstructure Synthesis and Sensing Dependencies: A WO3 study. In: Carpenter M.A., Mathur S., Kolmakov A., editors. Metal Oxide Nanomaterials for Chemical Sensors. Springer; New York, NY, USA: 2013.
    1. Wang L. Ph.D. Thesis. Stony Brook University; Stony Brook, NY, USA: Dec, 2008. Tailored Synthesis and Characterization of Selective Metabolite-Detecting Nanoprobes for Handheld Breath Analysis.
    1. Gerand B., Nowogrocki G., Guenot J., Figlarz M. Structural study of a new hexagonal form of tungsten trioxide. J. Solid State Chem. 1979;29:429–434. doi: 10.1016/0022-4596(79)90199-3.
    1. Ohira S., Li J., Lonneman W.A., Dasgupta P.K., Toda K. Can breath isoprene be measured by ozone chemiluminescence? Anal. Chem. 2007;79:2641–2649. doi: 10.1021/ac062334y.
    1. Teleki A., Pratsinis S.E., Kalyanasundaram K., Gouma P.I. Sensing of organic vapors by flame-made TiO2 nanoparticles. Sens. Actuators B. 2006;119:683–690. doi: 10.1016/j.snb.2006.01.027.
    1. Gouma P., Sood S., Stanacevic M., Simon S. Selective Chemosensing and diagnostic Breathalyzer. Proced. Eng. 2014;87:9–15. doi: 10.1016/j.proeng.2014.11.254.
    1. Perrone L.A., Belser A.J., Wadford D.A., Katz J.M., Tumpey T.M. Inducible Nitric Oxide Contributes to Viral Pathogenesis Following Highly Pathogenic Influenza Virus Infection in Mice. J. Infect. Dis. 2013;207 doi: 10.1093/infdis/jit062.
    1. Askenov A.A., Sandrock C.E., Zhao W., Sankaran S., Schivo M., Harper R., Cardona C.J., Xing Z., Davis C.E. Cellular Scent of Influenza Virus Infection. ChemBioChem. 2014;15:1040–1048.

Source: PubMed

3
订阅