Impaired quality of life, but not cognition, is linked to a history of chronic hypercortisolism in patients with Cushing's disease in remission

Emilie Pupier, Alicia Santos, Nicole Etchamendy, Aurélie Lavielle, Amandine Ferriere, Aline Marighetto, Eugenia Resmini, Daniela Cota, Susan M Webb, Antoine Tabarin, Emilie Pupier, Alicia Santos, Nicole Etchamendy, Aurélie Lavielle, Amandine Ferriere, Aline Marighetto, Eugenia Resmini, Daniela Cota, Susan M Webb, Antoine Tabarin

Abstract

Context: Impaired cognition and altered quality of life (QoL) may persist despite long-term remission of Cushing's disease (CD). Persistent comorbidities and treatment modalities may account for cognitive impairments. Therefore, the role of hypercortisolism per se on cognitive sequelae remains debatable.

Objective: To investigate whether memory and QoL are impaired after long-term remission of CD in patients with no confounding comorbidity.

Design and setting: Cross-sectional case-control study in two tertiary referral centers.

Patients: 25 patients (44.5 ± 2.4 years) in remission from CD for 102.7 ± 19.3 Mo and 25 well-matched controls, without comorbidity or treatment liable to impair cognition.

Main outcome measures: Hippocampus- and prefrontal cortex-dependent memory, including memory flexibility and working memory, were investigated using multiple tests including sensitive locally-developed computerized tasks. Depression and anxiety were evaluated with the MADRS and HADS questionnaires. QoL was evaluated with the SF-36 and CushingQoL questionnaires. The intensity of CD was assessed using mean urinary free cortisol and a score for clinical symptoms.

Results: CD patients displayed similar performance to controls in all cognitive tests. In contrast, despite the absence of depression and a minimal residual clinical Cushing score, patients had worse QoL. Most of the SF36 subscales and the CushingQoL score were negatively associated only with the duration of exposure to hypercortisolism (p≤ 0.01 to 0.001).

Conclusions: Persistent comorbidities can be a primary cause of long-lasting cognitive impairment and should be actively treated. Persistently altered QoL may reflect irreversible effects of hypercortisolism, highlighting the need to reduce its duration.

Clinical trial registration number: https://ichgcp.net/clinical-trials-registry/NCT02603653" title="See in ClinicalTrials.gov">NCT02603653.

Keywords: Cushing’s disease; cognition; hypercortisolism; memory; quality of life.

Conflict of interest statement

The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Copyright © 2022 Pupier, Santos, Etchamendy, Lavielle, Ferriere, Marighetto, Resmini, Cota, Webb and Tabarin.

Figures

Figure 1
Figure 1
Flow chart of the recruitment of patients with Cushing’s disease (CD) in the two investigating centers.

References

    1. Andela CD, van Haalen FM, Ragnarsson O, Papakokkinou E, Johannsson G, Santos A, et al. . Mechanisms in endocrinology: Cushing’s syndrome causes irreversible effects on the human brain: a systematic review of structural and functional magnetic resonance imaging studies. Eur J Endocrinol (2015) 173(1):R1–14. doi: 10.1530/EJE-14-1101
    1. Feelders RA, Pulgar SJ, Kempel A, Pereira AM. The burden of cushing’s disease: clinical and health-related quality of life aspects. Eur J Endocrinol (2012) 167(3):311–26. doi: 10.1530/EJE-11-1095
    1. Piasecka M, Papakokkinou E, Valassi E, Santos A, Webb SM, de Vries F, et al. . Psychiatric and neurocognitive consequences of endogenous hypercortisolism. J Intern Med (2020) 288(2):168–82. doi: 10.1111/joim.13056
    1. Resmini E, Santos A, Webb SM. Cortisol excess and the brain. Front Horm Res (2016) 46:74–86. doi: 10.1159/000443868
    1. Santos A, Resmini E, Gomez-Anson B, Crespo I, Granell E, Valassi E, et al. . Cardiovascular risk and white matter lesions after endocrine control of cushing’s syndrome. Eur J Endocrinol (2015) 173(6):765–75. doi: 10.1530/EJE-15-0600
    1. Broersen LHA, Andela CD, Dekkers OM, Pereira AM, Biermasz NR. Improvement but no normalization of quality of life and cognitive functioning after treatment of cushing syndrome. J Clin Endocrinol Metab (2019) 104(11):5325–37. doi: 10.1210/jc.2019-01054
    1. Frimodt-Moller KE, Mollegaard Jepsen JR, Feldt-Rasmussen U, Krogh J. Hippocampal volume, cognitive functions, depression, anxiety, and quality of life in patients with cushing syndrome. J Clin Endocrinol Metab (2019) 104(10):4563–77. doi: 10.1210/jc.2019-00749
    1. Santos A, Granell E, Gomez-Anson B, Crespo I, Pires P, Vives-Gilabert Y, et al. . Depression and anxiety scores are associated with amygdala volume in cushing’s syndrome: preliminary study. BioMed Res Int (2017) 2017:2061935. doi: 10.1155/2017/2061935
    1. Tiemensma J, Kokshoorn NE, Biermasz NR, Keijser BJ, Wassenaar MJ, Middelkoop HA, et al. . Subtle cognitive impairments in patients with long-term cure of cushing’s disease. J Clin Endocrinol Metab (2010) 95(6):2699–714. doi: 10.1210/jc.2009-2032
    1. Forget H, Lacroix A, Bourdeau I, Cohen H. Long-term cognitive effects of glucocorticoid excess in cushing’s syndrome. Psychoneuroendocrinol (2016) 65:26–33. doi: 10.1016/j.psyneuen.2015.11.020
    1. Hook JN, Giordani B, Schteingart DE, Guire K, Giles J, Ryan K, et al. . Patterns of cognitive change over time and relationship to age following successful treatment of cushing’s disease. J Int Neuropsychol Soc: JINS (2007) 13(1):21–9. doi: 10.1017/S1355617707070051
    1. Starkman MN, Giordani B, Gebarski SS, Schteingart DE. Improvement in learning associated with increase in hippocampal formation volume. Biol Psychiatry (2003) 53(3):233–8. doi: 10.1016/S0006-3223(02)01750-X
    1. Resmini E, Santos A, Gomez-Anson B, Vives Y, Pires P, Crespo I, et al. . Verbal and visual memory performance and hippocampal volumes, measured by 3-Tesla magnetic resonance imaging, in patients with cushing’s syndrome. J Clin Endocrinol Metab (2012) 97(2):663–71. doi: 10.1210/jc.2011-2231
    1. DeCarli C. Mild cognitive impairment: Prevalence, prognosis, aetiology, and treatment. Lancet Neurol (2003) 2(1):15–21. doi: 10.1016/S1474-4422(03)00262-X
    1. O’Brien PD, Hinder LM, Callaghan BC, Feldman EL. Neurological consequences of obesity. Lancet Neurol (2017) 16(6):465–77. doi: 10.1016/S1474-4422(17)30084-4
    1. van Sloten TT, Sedaghat S, Carnethon MR, Launer LJ, Stehouwer CDA. Cerebral microvascular complications of type 2 diabetes: stroke, cognitive dysfunction, and depression. Lancet Diabetes Endocrinol (2020) 8(4):325–36. doi: 10.1016/S2213-8587(19)30405-X
    1. Haring B, Wu C, Coker LH, Seth A, Snetselaar L, Manson JE, et al. . Hypertension, dietary sodium, and cognitive decline: Results from the women’s health initiative memory study. Am J Hypertens. (2016) 29(2):202–16. doi: 10.1093/ajh/hpv081
    1. Culpepper L, Lam RW, McIntyre RS. Cognitive impairment in patients with depression: awareness, assessment, and management. J Clin Psychiatry (2017) 78(9):1383–94. doi: 10.4088/JCP.tk16043ah5c
    1. Blacha AK, Rahvar AH, Flitsch J, van de Loo I, Kropp P, Harbeck B. Impaired attention in patients with adrenal insufficiency - Impact of unphysiological therapy. Steroids (2021) 167:108788. doi: 10.1016/j.steroids.2020.108788
    1. Falleti MG, Maruff P, Burman P, Harris A. The effects of growth hormone (GH) deficiency and GH replacement on cognitive performance in adults: a meta-analysis of the current literature. Psychoneuroendocrinol (2006) 31(6):681–91. doi: 10.1016/j.psyneuen.2006.01.005
    1. Jurado-Flores M, Warda F, Mooradian A. Pathophysiology and clinical features of neuropsychiatric manifestations of thyroid disease. J Endocrine Soc (2022) 6(2):bvab194. doi: 10.1210/jendso/bvab194
    1. Castinetti F, Brue T, Ragnarsson O. Radiotherapy as a tool for the treatment of cushing’s disease. Eur J Endocrinol (2019) 180(5):D9–D18. doi: 10.1530/EJE-19-0092
    1. Heald AH, Ghosh S, Bray S, Gibson C, Anderson SG, Buckler H, et al. . Long-term negative impact on quality of life in patients with successfully treated cushing’s disease. Clin Endocrinol (Oxf) (2004) 61(4):458–65. doi: 10.1111/j.1365-2265.2004.02118.x
    1. Lindsay JR, Nansel T, Baid S, Gumowski J, Nieman LK. Long-term impaired quality of life in cushing’s syndrome despite initial improvement after surgical remission. J Clin Endocrinol Metab (2006) 91(2):447–53. doi: 10.1210/jc.2005-1058
    1. Santos A, Resmini E, Martinez Momblan MA, Valassi E, Martel L, Webb SM. Quality of life in patients with cushing’s disease. Front Endocrinol (2019) 10:862. doi: 10.3389/fendo.2019.00862
    1. Rosenberg SJ, Ryan JJ, Prifitera A. Rey auditory-verbal learning test performance of patients with and without memory impairment. J Clin Psychol (1984) 40(3):785–7. doi: 10.1002/1097-4679(198405)40:3<785::AID-JCLP2270400325>;2-4
    1. Gleissner U, Elger CE. The hippocampal contribution to verbal fluency in patients with temporal lobe epilepsy. Cortex (2001) 37(1):55–63. doi: 10.1016/S0010-9452(08)70557-4
    1. Tulsky DS. A new look at the WMS-III: new research to guide clinical practice. J Clin Exp Neuropsychol (2004) 26(4):453–8. doi: 10.1080/13803390490490773
    1. Liberman J, Stewart W, Seines O, Gordon B. Rater agreement for the rey-osterrieth complex figure test. J Clin Psychol (1994) 50(4):615–24. doi: 10.1002/1097-4679(199407)50:4<615::AID-JCLP2270500419>;2-R
    1. Etchamendy N, Konishi K, Pike GB, Marighetto A, Bohbot VD. Evidence for a virtual human analog of a rodent relational memory task: A study of aging and fMRI in young adults. Hippocampus (2012) 22(4):869–80. doi: 10.1002/hipo.20948
    1. Konishi K, Etchamendy N, Roy S, Marighetto A, Rajah N, Bohbot VD. Decreased functional magnetic resonance imaging activity in the hippocampus in favor of the caudate nucleus in older adults tested in a virtual navigation task. Hippocampus (2013) 23(11):1005–14. doi: 10.1002/hipo.22181
    1. Mingaud F, Mormede C, Etchamendy N, Mons N, Niedergang B, Wietrzych M, et al. . Retinoid hyposignaling contributes to aging-related decline in hippocampal function in short-term/working memory organization and long-term declarative memory encoding in mice. J Neurosci (2008) 28(1):279–91. doi: 10.1523/JNEUROSCI.4065-07.2008
    1. Montgomery SA, Asberg M. A new depression scale designed to be sensitive to change. Br J Psychiatry (1979) 134:382–9. doi: 10.1192/bjp.134.4.382
    1. Snaith RP. The hospital anxiety and depression scale. Health Qual Life Outcomes (2003) 1:29. doi: 10.1186/1477-7525-1-29
    1. McHorney CA, Ware JE, Jr., Raczek AE. The MOS 36-item short-form health survey (SF-36): II. psychometric and clinical tests of validity in measuring physical and mental health constructs. Med Care (1993) 31(3):247–63. doi: 10.1097/00005650-199303000-00006
    1. Webb SM, Badia X, Barahona MJ, Colao A, Strasburger CJ, Tabarin A, et al. . Evaluation of health-related quality of life in patients with cushing’s syndrome with a new questionnaire. Eur J Endocrinol (2008) 158(5):623–30. doi: 10.1530/EJE-07-0762
    1. Marighetto A, Etchamendy N, Touzani K, Torrea CC, Yee BK, Rawlins JN, et al. . Knowing which and knowing what: a potential mouse model for age-related human declarative memory decline. Eur J Neurosci (1999) 11(9):3312–22. doi: 10.1046/j.1460-9568.1999.00741.x
    1. Sellami A, Abed ASA, Brayda-Bruno L, Etchamendy N, Valerio S, Oule M, et al. . Protocols to study declarative memory formation in mice and humans : optogenetics and translational behavioral approaches. Bio Protoc (2018) 8(12):e2888. doi: 10.21769/BioProtoc.2888
    1. Forget H, Lacroix A, Somma M, Cohen H. Cognitive decline in patients with cushing’s syndrome. J Int Neuropsychol Society: JINS (2000) 6(1):20–9. doi: 10.1017/S1355617700611037
    1. Psaras T, Milian M, Hattermann V, Gerlach C, Honegger J. Executive functions recover earlier than episodic memory after microsurgical transsphenoidal resection of pituitary tumors in adult patients–a longitudinal study. J Clin Neurosci (2011) 18(10):1340–5. doi: 10.1016/j.jocn.2011.01.027
    1. Psaras T, Milian M, Hattermann V, Will BE, Tatagiba M, Honegger J. Predictive factors for neurocognitive function and quality of life after surgical treatment for cushing’s disease and acromegaly. J Endocrinol Invest (2011) 34(7):e168–77. doi: 10.3275/7333
    1. Martignoni E, Costa A, Sinforiani E, Liuzzi A, Chiodini P, Mauri M, et al. . The brain as a target for adrenocortical steroids: cognitive implications. Psychoneuroendocrinol (1992) 17(4):343–54. doi: 10.1016/0306-4530(92)90040-E
    1. Mauri M, Sinforiani E, Bono G, Vignati F, Berselli ME, Attanasio R, et al. . Memory impairment in cushing’s disease. Acta Neurol Scand (1993) 87(1):52–5. doi: 10.1111/j.1600-0404.1993.tb04075.x
    1. Marighetto A, Brayda-Bruno L, Etchamendy N. Studying the impact of aging on memory systems: contribution of two behavioral models in the mouse. Curr Top Behav Neurosci (2012) 10:67–89. doi: 10.1007/7854_2011_151
    1. Popovic D, Vieta E, Fornaro M, Perugi G. Cognitive tolerability following successful long term treatment of major depression and anxiety disorders with SSRi antidepressants. J Affect Disord (2015) 173:211–5. doi: 10.1016/j.jad.2014.11.008
    1. Bengtsson D, Ragnarsson O, Berinder K, Dahlqvist P, Eden Engstrom B, Ekman B, et al. . Psychotropic drugs in patients with cushing’s disease before diagnosis and at long-term follow-up: a nationwide study. J Clin Endocrinol Metab (2021) 106(6):1750–60. doi: 10.1210/clinem/dgab079
    1. Papoian V, Biller BM, Webb SM, Campbell KK, Hodin RA, Phitayakorn R. Patients’ perception on clinical outcome and quality of life after a diagnosis of cushing syndrome. Endocr Pract (2016) 22(1):51–67. doi: 10.4158/EP15855.OR
    1. Badia X, Valassi E, Roset M, Webb SM. Disease-specific quality of life evaluation and its determinants in cushing’s syndrome: What have we learnt? Pituitary (2014) 17(2):187–95. doi: 10.1007/s11102-013-0484-2
    1. Tiemensma J, Kaptein AA, Pereira AM, Smit JW, Romijn JA, Biermasz NR. Negative illness perceptions are associated with impaired quality of life in patients after long-term remission of cushing’s syndrome. Eur J Endocrinol (2011) 165(4):527–35. doi: 10.1530/EJE-11-0307
    1. Marinelli M, Piazza PV. Interaction between glucocorticoid hormones, stress and psychostimulant drugs. Eur J Neurosci (2002) 16(3):387–94. doi: 10.1046/j.1460-9568.2002.02089.x
    1. Piazza PV, Le Moal M. Glucocorticoids as a biological substrate of reward: physiological and pathophysiological implications. Brain Res Brain Res Rev (1997) 25(3):359–72. doi: 10.1016/S0165-0173(97)00025-8
    1. Vinson GP, Brennan CH. Addiction and the adrenal cortex. Endocrine connections. (2013) 2(3):R1–R14. doi: 10.1530/EC-13-0028
    1. Koob GF. Neurobiology of opioid addiction: opponent process, hyperkatifeia, and negative reinforcement. Biol Psychiatry (2020) 87(1):44–53. doi: 10.1016/j.biopsych.2019.05.023
    1. Nieman LK, Biller BM, Findling JW, Murad MH, Newell-Price J, Savage MO, et al. . Treatment of cushing’s syndrome: an endocrine society clinical practice guideline. J Clin Endocrinol Metab (2015) 100(8):2807–31. doi: 10.1210/jc.2015-1818
    1. Kelly JF, Greene MC, Bergman BG. Beyond abstinence: Changes in indices of quality of life with time in recovery in a nationally representative sample of u.s. adults. Alcohol Clin Exp Res (2018) 42(4):770–80. doi: 10.1111/acer.13604
    1. Pivonello R, Isidori AM, De Martino MC, Newell-Price J, Biller BM, Colao A. Complications of cushing’s syndrome: state of the art. Lancet Diabetes Endocrinol (2016) 4(7):611–29. doi: 10.1016/S2213-8587(16)00086-3

Source: PubMed

3
订阅