Research into the effect Of SGLT2 inhibition on left ventricular remodelling in patients with heart failure and diabetes mellitus (REFORM) trial rationale and design

Jagdeep S S Singh, Amir Fathi, Keeran Vickneson, Ify Mordi, Mohapradeep Mohan, J Graeme Houston, Ewan R Pearson, Allan D Struthers, Chim C Lang, Jagdeep S S Singh, Amir Fathi, Keeran Vickneson, Ify Mordi, Mohapradeep Mohan, J Graeme Houston, Ewan R Pearson, Allan D Struthers, Chim C Lang

Abstract

Background: Heart failure (HF) and diabetes (DM) are a lethal combination. The current armamentarium of anti-diabetic agents has been shown to be less efficacious and sometimes even harmful in diabetic patients with concomitant cardiovascular disease, especially HF. Sodium glucose linked co-transporter type 2 (SGLT2) inhibitors are a new class of anti-diabetic agent that has shown potentially beneficial cardiovascular effects such as pre-load and after load reduction through osmotic diuresis, blood pressure reduction, reduced arterial stiffness and weight loss. This has been supported by the recently published EMPA-REG trial which showed a striking 38 and 35 % reduction in cardiovascular death and HF hospitalisation respectively.

Methods: The REFORM trial is a novel, phase IV randomised, double blind, placebo controlled clinical trial that has been ongoing since March 2015. It is designed specifically to test the safety and efficacy of the SLGT2 inhibitor, dapagliflozin, on diabetic patients with known HF. We utilise cardiac-MRI, cardio-pulmonary exercise testing, body composition analysis and other tests to quantify the cardiovascular and systemic effects of dapagliflozin 10 mg once daily against standard of care over a 1 year observation period. The primary outcome is to detect the change in left ventricular (LV) end systolic and LV end diastolic volumes. The secondary outcome measures include LV ejection fraction, LV mass index, exercise tolerance, fluid status, quality of life measures and others.

Conclusions: This trial will be able to determine if SGLT2 inhibitor therapy produces potentially beneficial effects in patients with DM and HF, thereby replacing current medications as the drug of choice when treating patients with both DM and HF. Trial registration Clinical Trials.gov: NCT02397421. Registered 12th March 2015.

Keywords: Cardiac MRI; Cardiopulmonary exercise testing; Diabetes; Heart failure; Mechanistic trial; SGLT2 inhibitor.

Figures

Fig. 1
Fig. 1
Normal renal tubular resorption of glucose. The figure above depicts the physiological resorption of glucose in the PCT of the nephron. SGLT2 co-transporters located at the S1 and S2 segments of the PCT are responsible for 90 % of the resorbed glucose, whereas SGLT1 co-transporters remove the remainder in the S3 segment. The diagram also identifies the site at which SGLT2 inhibitors act. PCT proximal convoluted tubules
Fig. 2
Fig. 2
Study design flowchart. HF Heart failure; LVESV Left ventricular end systolic volume; LVEDV Left ventricular end diastolic volume; LV Left ventricular; LVEF Left ventricular ejection fraction; MRI Magnetic resonance imaging; QOL Quality of life
Fig. 3
Fig. 3
REFORM trial hypothesis. The figure above explains the hypothesis of the REFORM trial where reduction in pre and afterload as well as improvement in exercise capacity and weight loss will all contribute to improvement in heart failure. These features will be measured by cardiac MRI, CPEX, 6MWT and BCA to determine their exact contribution to cardiac function. CPEX cardio-pulmonary exercise test; 6MWT 6 min walk test; BCA body composition analysis; V02 Max Maximum oxygen consumption; Ve minute ventilation; VC02 carbon dioxide production

References

    1. Forouzanfar MH, Moran A, Phillips D, Mensah G, Ezzati M, Naghavi M, Murray CJL. Prevalence of heart failure by cause in 21 regions: global burden of diseases, injuries and risk factors-2010 Study. J Am Coll of Cardiol. 2013; 61(10_S).
    1. Jessup M, Brozena S. Heart failure. N Engl J Med. 2003;348:2007–2018. doi: 10.1056/NEJMra021498.
    1. Members WG, Lloyd-Jones D, Adams RJ, Brown TM, Carnethon M, Dai S, Simone GD, Ferguson TB, Ford E, Furie K, et al. Heart disease and stroke statistics—2010 update. Circulation. 2010;121:e46–e215. doi: 10.1161/CIRCULATIONAHA.109.192667.
    1. Chong VH, Singh J, Parry H, Saunders J, Chowdhury F, Mancini DM, Lang CC. Management of non-cardiac comorbidities in chronic heart failure. Cardiovasc Ther. 2015.
    1. MacDonald MR, Petrie MC, Hawkins NM, Petrie JR, Fisher M, McKelvie R, Aguilar D, Krum H, McMurray JJ. Diabetes, left ventricular systolic dysfunction, and chronic heart failure. Eur Heart J. 2008;29:1224–1240. doi: 10.1093/eurheartj/ehn156.
    1. Kristensen SL, Preiss D, Jhund PS, Squire I, Cardoso JS, Merkely B, Martinez F, Starling RC, Desai AS, Lefkowitz MP, et al. Risk related to pre-diabetes mellitus and diabetes mellitus in heart failure with reduced ejection fraction: insights from prospective comparison of arni with acei to determine impact on global mortality and morbidity in heart failure trial. Circ Heart Fail. 2016;9:e002560. doi: 10.1161/CIRCHEARTFAILURE.115.002560.
    1. Deswal A, Petersen NJ, Souchek J, Ashton CM, Wray NP. Impact of race on health care utilization and outcomes in veterans with congestive heart failure. J Am Coll Cardiol. 2004;43:778–784. doi: 10.1016/j.jacc.2003.10.033.
    1. Rathore SS, Foody JM, Wang Y, et al. Race, quality of care, and outcomes of elderly patients hospitalized with heart failure. JAMA. 2003;289:2517. doi: 10.1001/jama.289.19.2517.
    1. Murcia AM, Hennekens CH, Lamas GA, Jimenez-Navarro M, Rouleau JL, Flaker GC, Goldman S, Skali H, Braunwald E, Pfeffer MA. Impact of diabetes on mortality in patients with myocardial infarction and left ventricular dysfunction. Arch Intern Med. 2004;164:2273–2279. doi: 10.1001/archinte.164.20.2273.
    1. Cubbon RM, Adams B, Rajwani A, Mercer BN, Patel PA, Gherardi G, Gale CP, Batin PD, Ajjan R, Kearney L, et al. Diabetes mellitus is associated with adverse prognosis in chronic heart failure of ischaemic and non-ischaemic aetiology. Diab Vasc Dis Res. 2013;10:330–336. doi: 10.1177/1479164112471064.
    1. Inzucchi SE, Bergenstal RM, Buse JB, Diamant M, Ferrannini E, Nauck M, Peters AL, Tsapas A, Wender R, Matthews DR. Management of hyperglycemia in type 2 diabetes: a patient-centered approach: position statement of the American Diabetes Association (ADA) and the European Association for the Study of Diabetes (EASD) Diabetes Care. 2012;35:1364–1379. doi: 10.2337/dc12-0413.
    1. Evans JM, Doney AS, AlZadjali MA, Ogston SA, Petrie JR, Morris AD, Struthers AD, Wong AK, Lang CC. Effect of Metformin on mortality in patients with heart failure and type 2 diabetes mellitus. Am J Cardiol. 2010;106:1006–1010. doi: 10.1016/j.amjcard.2010.05.031.
    1. Andersson C, Olesen JB, Hansen PR, Weeke P, Norgaard ML, Jorgensen CH, Lange T, Abildstrom SZ, Schramm TK, Vaag A, et al. Metformin treatment is associated with a low risk of mortality in diabetic patients with heart failure: a retrospective nationwide cohort study. Diabetologia. 2010;53:2546–2553. doi: 10.1007/s00125-010-1906-6.
    1. Elder DH, Singh JS, Levin D, Donnelly LA, Choy AM, George J, Struthers AD, Doney AS, Lang CC. Mean HbA1c and mortality in diabetic individuals with heart failure: a population cohort study. Eur J Heart Fail. 2016;18:94–102. doi: 10.1002/ejhf.455.
    1. Aquilante CL. Sulfonylurea pharmacogenomics in Type 2 diabetes: the influence of drug target and diabetes risk polymorphisms. Expert Rev Cardiovasc Ther. 2010;8:359–372. doi: 10.1586/erc.09.154.
    1. Tzoulaki I, Molokhia M, Curcin V, Little MP, Millett CJ, Ng A, Hughes RI, Khunti K, Wilkins MR, Majeed A, Elliott P. Risk of cardiovascular disease and all cause mortality among patients with type 2 diabetes prescribed oral antidiabetes drugs: retrospective cohort study using UK general practice research database. BMJ. 2009;339:b4731. doi: 10.1136/bmj.b4731.
    1. Forst T, Hanefeld M, Jacob S, Moeser G, Schwenk G, Pfutzner A, Haupt A. Association of sulphonylurea treatment with all-cause and cardiovascular mortality: a systematic review and meta-analysis of observational studies. Diab Vasc Dis Res. 2013;10:302–314. doi: 10.1177/1479164112465442.
    1. Eurich DT, McAlister FA, Blackburn DF, Majumdar SR, Tsuyuki RT, Varney J, Johnson JA. Benefits and harms of antidiabetic agents in patients with diabetes and heart failure: systematic review. BMJ. 2007;335:497. doi: 10.1136/bmj.39314.620174.80.
    1. Green JB, Bethel MA, Armstrong PW, Buse JB, Engel SS, Garg J, Josse R, Kaufman KD, Koglin J, Korn S, et al. Effect of sitagliptin on cardiovascular outcomes in type 2 diabetes. N Engl J Med. 2015;373:232–242. doi: 10.1056/NEJMoa1501352.
    1. White WB, Cannon CP, Heller SR, Nissen SE, Bergenstal RM, Bakris GL, Perez AT, Fleck PR, Mehta CR, Kupfer S, et al. Alogliptin after acute coronary syndrome in patients with type 2 diabetes. N Engl J Med. 2013;369:1327–1335. doi: 10.1056/NEJMoa1305889.
    1. Scirica BM, Bhatt DL, Braunwald E, Steg PG, Davidson J, Hirshberg B, Ohman P, Frederich R, Wiviott SD, Hoffman EB, et al. Saxagliptin and cardiovascular outcomes in patients with type 2 diabetes mellitus. N Engl J Med. 2013;369:1317–1326. doi: 10.1056/NEJMoa1307684.
    1. Shubrook JH, Bokaie BB, Adkins SE. Empagliflozin in the treatment of type 2 diabetes: evidence to date. Drug Des Devel Ther. 2015;9:5793–5803. doi: 10.2147/DDDT.S69926.
    1. Kalra S. Sodium glucose Co-transporter-2 (SGLT2) inhibitors: a review of their basic and clinical pharmacology. Diabetes Ther. 2014;5:355–366. doi: 10.1007/s13300-014-0089-4.
    1. Nauck MA. Update on developments with SGLT2 inhibitors in the management of type 2 diabetes. Drug Des Devel Ther. 2014;8:1335–1380. doi: 10.2147/DDDT.S50773.
    1. Han S, Hagan DL, Taylor JR, Xin L, Meng W, Biller SA, Wetterau JR, Washburn WN, Whaley JM. Dapagliflozin, a selective SGLT2 inhibitor, improves glucose homeostasis in normal and diabetic rats. Diabetes. 2008;57:1723–1729. doi: 10.2337/db07-1472.
    1. McCrimmon RJ, Evans ML, Jacob RJ, Fan X, Zhu Y, Shulman GI, Sherwin RS. AICAR and phlorizin reverse the hypoglycemia-specific defect in glucagon secretion in the diabetic BB rat. Am J Physiol Endocrinol Metab. 2002;283:E1076–E1083. doi: 10.1152/ajpendo.00195.2002.
    1. Oliva RV, Bakris GL. Blood pressure effects of sodium-glucose co-transport 2 (SGLT2) inhibitors. J Am Soc Hypertens. 2014;8:330–339. doi: 10.1016/j.jash.2014.02.003.
    1. Majewski C, Bakris GL. Blood pressure reduction: an added benefit of sodium-glucose cotransporter 2 inhibitors in patients with type 2 diabetes. Diabetes Care. 2015;38:429–430. doi: 10.2337/dc14-1596.
    1. Cherney DZ, Perkins BA, Soleymanlou N, Har R, Fagan N, Johansen OE, Woerle HJ, von Eynatten M, Broedl UC. The effect of empagliflozin on arterial stiffness and heart rate variability in subjects with uncomplicated type 1 diabetes mellitus. Cardiovasc Diabetol. 2014;13:28. doi: 10.1186/1475-2840-13-28.
    1. Cherney DVEM, Lund S, Kaspers S, Crowe S, Woerle HJ, Hach T. Sodium glucose cotransporter 2 (SGLT2) inhibition with empagliflozin (EMPA) reduces microalbuminuria in patients with type 2 diabetes (T2D) [abstract] Diabetes. 2014;63((suppl 1)):1125.
    1. Zinman B, Wanner C, Lachin JM, Fitchett D, Bluhmki E, Hantel S, Mattheus M, Devins T, Johansen OE, Woerle HJ, et al. Empagliflozin, cardiovascular outcomes, and mortality in type 2 diabetes. N Engl J Med. 2015;373:2117–2128. doi: 10.1056/NEJMoa1504720.
    1. Fitchett D, Zinman B, Wanner C, Lachin JM, Hantel S, Salsali A, Johansen OE, Woerle HJ, Broedl UC, Inzucchi SE. Heart failure outcomes with empagliflozin in patients with type 2 diabetes at high cardiovascular risk: results of the EMPA-REG OUTCOME(R) trial. Eur Heart J. 2016.
    1. Konstam MA, Kramer DG, Patel AR, Maron MS, Udelson JE. Left ventricular remodeling in heart failure: current concepts in clinical significance and assessment. JACC Cardiovasc Imaging. 2011;4:98–108. doi: 10.1016/j.jcmg.2010.10.008.
    1. Grothues F, Smith GC, Moon JC, Bellenger NG, Collins P, Klein HU, Pennell DJ. Comparison of interstudy reproducibility of cardiovascular magnetic resonance with two-dimensional echocardiography in normal subjects and in patients with heart failure or left ventricular hypertrophy. Am J Cardiol. 2002;90:29–34. doi: 10.1016/S0002-9149(02)02381-0.
    1. Kramer DG, Trikalinos TA, Kent DM, Antonopoulos GV, Konstam MA, Udelson JE. Quantitative evaluation of drug or device effects on ventricular remodeling as predictors of therapeutic effects on mortality in patients with heart failure and reduced ejection fraction: a meta-analytic approach. J Am Coll Cardiol. 2010;56:392–406. doi: 10.1016/j.jacc.2010.05.011.
    1. Rekhraj S, Gandy SJ, Szwejkowski BR, Nadir MA, Noman A, Houston JG, Lang CC, George J, Struthers AD. High-dose allopurinol reduces left ventricular mass in patients with ischemic heart disease. J Am Coll Cardiol. 2013;61:926–932. doi: 10.1016/j.jacc.2012.09.066.
    1. Cherney DZI, Perkins BA, Soleymanlou N, Maione M, Lai V, Lee A, Fagan NM, Woerle HJ, Johansen OE, Broedl UC, von Eynatten M. Renal hemodynamic effect of sodium-glucose cotransporter 2 inhibition in patients with type 1 diabetes mellitus. Circulation. 2014;129:587–597. doi: 10.1161/CIRCULATIONAHA.113.005081.
    1. Kosiborod M, Gause-Nilsson I, Sonesson C, Johnsson2 E. Efficacy and safety of dapagliflozin in patients with type 2 diabetes mellitus and concomitant heart failure. European Assoc For The Study of Diabetes Annual Meeting (abstract); 2015.
    1. Weber MA, Mansfield TA, Cain VA, Iqbal N, Parikh S, Ptaszynska A. Blood pressure and glycaemic effects of dapagliflozin versus placebo in patients with type 2 diabetes on combination antihypertensive therapy: a randomised, double-blind, placebo-controlled, phase 3 study. Lancet Diabetes Endocrinol. 2015.
    1. Tikkanen I, Narko K, Zeller C, Green A, Salsali A, Broedl UC, Woerle HJ. Empagliflozin reduces blood pressure in patients with type 2 diabetes and hypertension. Diabetes Care. 2015;38:420–428. doi: 10.2337/dc14-1096.
    1. Devereux RB, Roman MJ. Left ventricular hypertrophy in hypertension: stimuli, patterns, and consequences. Hypertens Res. 1999;22:1–9. doi: 10.1291/hypres.22.1.
    1. Devereux RB, Palmieri V, Liu JE, Wachtell K, Bella JN, Boman K, Gerdts E, Nieminen MS, Papademetriou V, Dahlof B. Progressive hypertrophy regression with sustained pressure reduction in hypertension: the Losartan intervention for endpoint reduction study. J Hypertens. 2002;20:1445–1450. doi: 10.1097/00004872-200207000-00033.
    1. Cohn JN, Ferrari R, Sharpe N. Cardiac remodeling—concepts and clinical implications: a consensus paper from an international forum on cardiac remodeling. J Am Coll Cardiol. 2000;35:569–582. doi: 10.1016/S0735-1097(99)00630-0.
    1. Younis FMHK, Mayoux EW, et al. Effect of prophylactic treatment with empagliflozin on cardiac function and diabetes in CRDH rats. Dibetes. 2014;63((suppl. 1)):A273.
    1. Conraads VM, Spruit MA, Braunschweig F, Cowie MR, Tavazzi L, Borggrefe M, Hill MR, Jacobs S, Gerritse B, van Veldhuisen DJ. Physical activity measured with implanted devices predicts patient outcome in chronic heart failure. Circ Heart Fail. 2014;7:279–287. doi: 10.1161/CIRCHEARTFAILURE.113.000883.
    1. O’Connor CM, Whellan DJ, Lee KL, Keteyian SJ, Cooper LS, Ellis SJ, Leifer ES, Kraus WE, Kitzman DW, Blumenthal JA, et al. Efficacy and safety of exercise training in patients with chronic heart failure: HF-ACTION randomized controlled trial. JAMA. 2009;301:1439–1450. doi: 10.1001/jama.2009.454.
    1. Taylor RS, Sagar VA, Davies EJ, Briscoe S, Coats AJ, Dalal H, Lough F, Rees K, Singh S. Exercise-based rehabilitation for heart failure. Cochrane Database Syst Rev. 2014;4:Cd003331.
    1. Bolinder J, Ljunggren Ö, Kullberg J, Johansson L, Wilding J, Langkilde AM, Sugg J, Parikh S. Effects of dapagliflozin on body weight, total fat mass, and regional adipose tissue distribution in patients with type 2 diabetes mellitus with inadequate glycemic control on metformin. J Clin Endocrinol Metab. 2011;97:1020–1031. doi: 10.1210/jc.2011-2260.
    1. Doehner W, Rauchhaus M, Ponikowski P, Godsland IF, von Haehling S, Okonko DO, Leyva F, Proudler AJ, Coats AJ, Anker SD. Impaired insulin sensitivity as an independent risk factor for mortality in patients with stable chronic heart failure. J Am Coll Cardiol. 2005;46:1019–1026. doi: 10.1016/j.jacc.2005.02.093.
    1. Kriska AM, Hanley AJ, Harris SB, Zinman B. Physical activity, physical fitness, and insulin and glucose concentrations in an isolated Native Canadian population experiencing rapid lifestyle change. Diabetes Care. 2001;24:1787–1792. doi: 10.2337/diacare.24.10.1787.
    1. Kasa-Vubu JZ, Lee CC, Rosenthal A, Singer K, Halter JB. Cardiovascular fitness and exercise as determinants of insulin resistance in postpubertal adolescent females. J Clin Endocrinol Metab. 2005;90:849–854. doi: 10.1210/jc.2004-0455.
    1. Seibæk M, Vestergaard H, Burchardt H, Sloth C, Torp-Pedersen C, Nielsen SL, Hildebrandt P, Pedersen O. Insulin resistance and maximal oxygen uptake. Clin Cardiol. 2003;26:515–520. doi: 10.1002/clc.4960261107.
    1. Hsueh WA, Lyon CJ, Quinones MJ. Insulin resistance and the endothelium. Am J Med. 2004;117:109–117. doi: 10.1016/j.amjmed.2004.02.042.
    1. Wong AK, Symon R, AlZadjali MA, Ang DS, Ogston S, Choy A, Petrie JR, Struthers AD, Lang CC. The effect of metformin on insulin resistance and exercise parameters in patients with heart failure. Eur J Heart Fail. 2012;14:1303–1310. doi: 10.1093/eurjhf/hfs106.
    1. Brandenburg SL, Reusch JE, Bauer TA, Jeffers BW, Hiatt WR, Regensteiner JG. Effects of exercise training on oxygen uptake kinetic responses in women with type 2 diabetes. Diabetes Care. 1999;22:1640–1646. doi: 10.2337/diacare.22.10.1640.
    1. Regensteiner JG, Bauer TA, Reusch JE. Rosiglitazone improves exercise capacity in individuals with type 2 diabetes. Diabetes Care. 2005;28:2877–2883. doi: 10.2337/diacare.28.12.2877.
    1. Thomas L, Grempler R, Eckhardt M, Himmelsbach F, Sauer A, Klein T, Eickelmann P, Mark M. Long-term treatment with empagliflozin, a novel, potent and selective SGLT-2 inhibitor, improves glycaemic control and features of metabolic syndrome in diabetic rats. Diabetes Obes Metab. 2012;14:94–96. doi: 10.1111/j.1463-1326.2011.01518.x.
    1. Mudaliar S, Henry RR, Boden G, Smith S, Chalamandaris AG, Duchesne D, Iqbal N, List J. Changes in insulin sensitivity and insulin secretion with the sodium glucose cotransporter 2 inhibitor dapagliflozin. Diabetes Technol Ther. 2014;16:137–144. doi: 10.1089/dia.2013.0167.

Source: PubMed

3
订阅