Biochemical Changes in Blood of Patients with Duchenne Muscular Dystrophy Treated with Granulocyte-Colony Stimulating Factor

Dorota Sienkiewicz, Wojciech Kułak, Grażyna Paszko-Patej, Bożena Okurowska-Zawada, Jerzy Sienkiewicz, Piotr Kułak, Dorota Sienkiewicz, Wojciech Kułak, Grażyna Paszko-Patej, Bożena Okurowska-Zawada, Jerzy Sienkiewicz, Piotr Kułak

Abstract

Introduction: In addition to the "gold standard" of therapy-steroids and gene therapy-there are experimental trials using granulocyte-colony stimulating factor (G-CSF) for patients with Duchenne muscular dystrophy (DMD). The aim of this study was to present the biochemical changes in blood after repeating cycles of granulocyte-colony stimulating factor G-CSF therapy in children with DMD.

Materials and methods: Nineteen patients, aged 5 to 15 years, with diagnosed DMD confirmed by genetic tests, participated; nine were in wheelchairs, and ten were mobile and independent. Patients had a clinical assessment and laboratory tests to evaluate hematological parameters and biochemistry. G-CSF (5μg/kg/day) was given subcutaneously for five days during five nonconsecutive months over the course of a year.

Results: We found a significant elevation of white blood cells, and the level of leucocytes returned to norm after each cycle. No signs of any inflammatory process were found by monitoring C-reactive protein. We did not detect significant changes in red blood cells, hemoglobin, and platelet levels or coagulation parameters. We found a significant elevation of uric acid, with normalization after finishing each treatment cycle. A significant decrease of the mean value activity of aspartate transaminase (AST) and alanine transaminase (ALT) of the G-CSF treatment was noted. After each five days of therapy, the level of cholesterol was significantly lowered. Also, glucose concentration significantly decreased after the fourth cycle.

Conclusions: G-SCF decreased the aminotransferases activity, cholesterol level, and glucose level in patients with DMD, which may be important for patients with DMD and metabolic syndrome.

References

    1. Anderlini P., Champlin R. E. Biologic and molecular effects of granulocyte colony-stimulating factor in healthy individuals: recent findings and current challenges. Blood. 2008;111(4):1767–1772. doi: 10.1182/blood-2007-07-097543.
    1. Renner P., Milazzo S., Liu JP., Zwahlen M., Birkmann J., Homeber M. Primary prophylactic colony-stimulating factors for the prevention of chemotherapy-induced febrile neutropenia in breast cancer patients. Cochrane Database of Systematic Reviews. 2012;10, article CD007913
    1. Zhang Y., Cheng G., Yang K., et al. A novel function of granulocyte colony-stimulating factor in mobilization of human hematopoietic progenitor cells. Immunology & Cell Biology. 2009;87(5):428–432. doi: 10.1038/icb.2009.9.
    1. Schuster A., Klotz M., Schwab T., Lilischkis R., Schneider A., Schafer K. H. Granulocyte-colony stimulating factor: a new player for the enteric nervous system. Cell and Tissue Research. 2014;355(1):35–48. doi: 10.1007/s00441-013-1744-1.
    1. Song Y. S., Fang C. H., So B. I., Park J. Y., Jun D. W., Kim K. S. Therapeutic effects of granulocyte-colony stimulating factor on non-alcoholic hepatic steatosis in the rat. Annals of Hepatology. 2013;12(1):115–122.
    1. Lee Y., Song Y., Fang C., et al. Anti-obesity effects of granulocyte-colony stimulating factor in otsuka-long-evans-tokushima fatty rats. PLoS ONE. 2014;9(8, article e105603) doi: 10.1371/journal.pone.0105603.
    1. Stroncek D. F., Clay M. E., Petzoldt M. L., et al. Treatment of normal individuals with granulocyte-colony-stimulating factor: donor experiences and the effects on peripheral blood CD34+ cell counts and on the collection of peripheral blood stem cells. Transfusion. 1996;36(7):601–610. doi: 10.1046/j.1537-2995.1996.36796323059.x.
    1. Hatfield K. J., Melve G. K., Bruserud Ø. Granulocyte colony-stimulating factor alters the systemic metabolomic profile in healthy donors. Metabolomics. 2017;13(1, article 2)
    1. Sienkiewicz D., Kulak W., Okurowska-Zawada B., et al. Efficacy and the safety of granulocyte colony-stimulating factor treatment in patients with muscular dystrophy: a non-randomized clinical trial. Frontiers in Neurology. 2017;8, article 566
    1. Mercuri E., Muntoni F. Muscular dystrophies. The Lancet. 2013;381(9869):845–860. doi: 10.1016/S0140-6736(12)61897-2.
    1. Mendell J. R., Lloyd-Puryear M. Report of MDA muscle disease symposium on newborn screening for Duchenne muscular dystrophy. Muscle & Nerve. 2013;48(1):21–26. doi: 10.1002/mus.23810.
    1. Braun R., Wang Z., Mack D. L., Childers M. K. Gene therapy for inherited muscle diseases: where genetics meets rehabilitation medicine. American Journal of Physical Medicine & Rehabilitation. 2014;93:S97–S107. doi: 10.1097/PHM.0000000000000138.
    1. Ervasti M., Sonnemann K. J. Biology of the striated muscle dystrophin-glycoprotein complex. International Review of Cytology. 2008;265:191–225.
    1. Lapidos K. A., Kakkar R., McNally E. M. The dystrophin glycoprotein complex: signaling strength and integrity for the sarcolemma. Circulation Research. 2004;94(8):1023–1031. doi: 10.1161/01.RES.0000126574.61061.25.
    1. Shimizu-Motohashi Y., Asakura A. Angiogenesis as a novel therapeutic strategy for Duchenne muscular dystrophy through decreased ischemia and increased satellite cells. Frontiers in Physiology. 2014;5, article 50 doi: 10.3389/fphys.2014.00050.
    1. Eljaszewicz A., Sienkiewicz D., Grubczak K., et al. Effect of periodic granulocyte colony-stimulating factor administration on endothelial progenitor cells and different monocyte subsets in pediatric patients with muscular dystrophies. Stem Cells International. 2016:1–9.
    1. Bach J. R., Martinez D. Duchenne muscular dystrophy: continuous noninvasive ventilatory support prolongs survival. Respiratory Care. 2011;56(6):744–750. doi: 10.4187/respcare.00831.
    1. Simões G. F., Benitez S. U., Oliveira A. L. Granulocyte colony-stimulating factor (G-CSF) positive effects on muscle fiber degeneration and gait recovery after nerve lesion in MDX mice. Brain and Behavior. 2014;4(5):738–753. doi: 10.1002/brb3.250.
    1. Hayashiji N., Yuasa S., Miyagoe-Suzuki Y., et al. G-CSF supports long-term muscle regeneration in mouse models of muscular dystrophy. Nature Communications. 2015;6, article 6745
    1. Pane M., Scalise R., Berardinelli A., et al. Early neurodevelopmental assessment in Duchenne muscular dystrophy. Neuromuscular Disorders. 2013;23:451–455.
    1. Muntoni F. The development of antisense oligonucleotide therapies for Duchenne muscular dystrophy: report on a TREAT-NMD workshop hosted by the European Medicines Agency (EMA), on September 25th 2009. Neuromuscular Disorders. 2009;20(5):355–362. doi: 10.1016/j.nmd.2010.03.005.
    1. Ricotti V., Ridout D. A., Scott E., et al. Long-term benefits and adverse effects of intermittent versus daily glucocorticoids in boys with Duchenne muscular dystrophy. Journal of Neurology, Neurosurgery & Psychiatry. 2013;84(6):698–705. doi: 10.1136/jnnp-2012-303902.
    1. Rodríguez-Cruz M., Cruz-Guzmán O. R., Escobar R. E., López-Alarcón M. Leptin and metabolic syndrome in patients with Duchenne/Becker muscular dystrophy. Acta Neurologica Scandinavica. 2016;133(4):253–260.
    1. Anderlini P., Przepiorka D., Seong D., et al. Clinical toxicity and laboratory effects of granulocyte-colony- stimulating factor (filgrastim) mobilization and blood stem cell apheresis from normal donors, and analysis of charges for the procedures. Transfusion. 1996;36(7):590–595. doi: 10.1046/j.1537-2995.1996.36796323057.x.
    1. Jin S., Meng X., Sun X., et al. Granulocyte colony-stimulating factor enhances bone marrow mononuclear cell homing to the liver in a mouse model of acute hepatic injury. Digestive Diseases and Sciences. 2010;55(10):2805–2813. doi: 10.1007/s10620-009-1117-5.
    1. Ji Y., Dahmen U., Madrahimov N., Madrahimova F., Xing W., Dirsch O. G-CSF administration in a small-for-size liver model. Journal of Investigative Surgery. 2009;22(3):167–177. doi: 10.1080/08941930802713027.
    1. Matsumoto T., Watanabe H., Ueno T., et al. Appropriate doses of granulocyte-colony stimulating factor reduced atherosclerotic plaque formation and increased plaque stability in cholesterol-fed rabbits. Journal of Atherosclerosis and Thrombosis. 2010;17(1):84–96. doi: 10.5551/jat.2279.
    1. Nimer S. D., Champlin R. E., Golde D. W. Serum cholesterol-lowering activity of granulocyte-macrophage colony-stimulating factor. Journal of the American Medical Association. 1988;260(22):3297–3300. doi: 10.1001/jama.1988.03410220081032.
    1. Watt M. J., Dzamko N., Thomas W. G., et al. CNTF reverses obesity-induced insulin resistance by activating skeletal muscle AMPK. Nature Medicine. 2006;12(5):541–548. doi: 10.1038/nm1383.
    1. White U. A., Stephens J. M. The gpl 30 receptor cytokine family: regulators of adipocyte development and function. Current Pharmaceutical Design. 2011;17(4):340–346.
    1. Moschen A. R., Molnar C., Geiger S., et al. Anti-inflammatory effects of excessive weight loss: potent suppression of adipose interleukin 6 and tumour necrosis factor a expression. Gut. 2010;59(9):1259–1264. doi: 10.1136/gut.2010.214577.
    1. Nishiki S., Hato F., Kamata N., et al. Selective activation of STAT3 in human monocytes stimulated by G-CSF: implication in inhibition of LPS-induced TNF-alpha production. American Journal of Physiology-Cell Physiology. 2004;286(6):C1302–C1311. doi: 10.1152/ajpcell.00387.2003.
    1. Fernández-Formoso G., Pérez-Sieira S., González-Touceda D., Dieguez C., Tovar S. Leptin, 20 years of searching for glucose homeostasis. Life Sciences. 2015;140:4–9. doi: 10.1016/j.lfs.2015.02.008.14301
    1. Yannaki E., Athanasiou E., Xagorari A., et al. G-CSF-primed hematopoietic stem cells or G-CSF per se accelerate recovery and improve survival after liver injury, predominantly by promoting endogenous repair programs. Experimental Hematology. 2005;33(1):108–119. doi: 10.1016/j.exphem.2004.09.005.

Source: PubMed

3
订阅