Filgotinib, a JAK1 Inhibitor, Modulates Disease-Related Biomarkers in Rheumatoid Arthritis: Results from Two Randomized, Controlled Phase 2b Trials

Jacqueline M Tarrant, René Galien, Wanying Li, Lovely Goyal, Yang Pan, Rachael Hawtin, Wangshu Zhang, Annegret Van der Aa, Peter C Taylor, Jacqueline M Tarrant, René Galien, Wanying Li, Lovely Goyal, Yang Pan, Rachael Hawtin, Wangshu Zhang, Annegret Van der Aa, Peter C Taylor

Abstract

Introduction: The Janus kinase (JAK) inhibitor therapeutic class has shown significant clinical benefit in the treatment of rheumatoid arthritis (RA). We sought to gain insight into the mode of action and immunological effects of filgotinib, a JAK1 selective inhibitor, in active RA by analyzing secreted and cell-based biomarkers key to RA pathophysiology in two phase 2b trials of filgotinib in active RA.

Methods: Immune cell subsets and 34 serum biomarkers were analyzed longitudinally over 12 weeks using blood samples collected from patients with active RA receiving filgotinib (100 or 200 mg once daily) or placebo (PBO) in the two phase 2b trials (DARWIN 1, on a background of methotrexate, and DARWIN 2, as monotherapy).

Results: Consistently across both studies, filgotinib treatment decreased multiple immune response biomarkers that have key roles in RA for immune response, and decreased markers that promote matrix degradation, angiogenesis, leukocyte adhesion, and recruitment. Filgotinib did not significantly modulate T and natural killer (NK) lymphoid subsets, but slightly increased B cell numbers after 12 weeks. Multiple correlations were observed for changes in biomarkers with disease activity score 28-CRP. MIP1β showed modest predictivity at baseline for ACR50 response at 12 weeks in the 100 mg filgotinib dose across both studies (AUROC, 0.65 and 0.67, p < 0.05).

Conclusions: Filgotinib regulates biomarkers from multiple pathways, indicative of direct and indirect network effects on the immune system and the stromal response. These effects were not associated with reductions of major circulating lymphoid populations.

Trial registration: ClinicalTrials.gov, NCT01888874, NCT01894516.

Keywords: Biomarkers; Cytokines; DARWIN1; DARWIN2; Filgotinib; Rheumatoid arthritis.

Figures

Fig. 1
Fig. 1
Baseline levels (median, interquartile range) of biomarkers in DARWIN 1 (filgotinib on MTX background therapy) and DARWIN 2 (filgotinib monotherapy)
Fig. 2
Fig. 2
Early and sustained biomarker changes with filgotinib in DARWIN 1 and DARWIN 2 based on a model of estimated percent change from placebo in post-BL ratio of each biomarker
Fig. 3
Fig. 3
Percent change of biomarkers from baseline in filgotinib-treated arms were comparable in DARWIN 1 (filgotinib [FIL] + methotrexate [MTX]) and DARWIN 2 (FIL monotherapy)
Fig. 4
Fig. 4
Box plots of percentage changes from baseline in absolute lymphocyte subpopulation counts at weeks 2 and 12 in the DARWIN 1 and DARWIN 2 studies
Fig. 5
Fig. 5
Overview of the cytokine-mediated regulation of synovial interactions. Adapted from Ref. [37]

References

    1. Centola M, Cavet G, Shen Y, Ramanujan S, Knowlton N, Swan KA, Turner M, Sutton C, Smith DR, Haney DJ, Chernoff D, Hesterberg LK, Carulli JP, Taylor PC, Shadick NA, Weinblatt ME, Curtis J. R Development of a multi-biomarker disease activity test for rheumatoid arthritis. PLoS One. 2013;8(4):e60635. doi: 10.1371/journal.pone.0060635.
    1. O’Shea JJ, Holland SM, Staudt LM. JAKs and STATs in immunity, immunodeficiency, and cancer. N Engl J Med. 2013;368(2):161–170. doi: 10.1056/NEJMra1202117.
    1. Haan C, Rolvering C, Raulf F, Kapp M, Druckes P, Thoma G, Behrmann I, Zerwes HG. JAK1 has a dominant role over JAK3 in signal transduction through gamma c-containing cytokine receptors. Chem Biol. 2011;18(3):314–323. doi: 10.1016/j.chembiol.2011.01.012.
    1. Ito H, Takazoe M, Fukuda Y, Hibi T, Kusugami K, Andoh A, Matsumoto T, Yamamura T, Azuma J, Nishimoto N, Yoshizaki K, Shimoyama T, Kishimoto T. A pilot randomized trial of a human anti-interleukin-6 receptor monoclonal antibody in active Crohn’s disease. Gastroenterology. 2004;126(4):989–996. doi: 10.1053/j.gastro.2004.01.012.
    1. Kavanaugh A, Kremer J, Ponce L, Cseuz R, Reshetko OV, Stanislavchuk M, Greenwald M, Van der Aa A, Vanhoutte F, Tasset C, Harrison P. Filgotinib (Glpg0634/Gs-6034), an oral selective JAK1 inhibitor, is effective as monotherapy in patients with active rheumatoid arthritis: results from a randomised, dose-finding study (Darwin 2) Ann Rheum Dis. 2017;76(6):1009–1019. doi: 10.1136/annrheumdis-2016-210105.
    1. Westhovens R, Taylor PC, Alten R, Pavlova D, Enriquez-Sosa F, Mazur M, Greenwald M, Van der Aa A, Vanhoutte F, Tasset C, Harrison P. Filgotinib (Glpg0634/Gs-6034), an oral JAK1 selective inhibitor, is effective in combination with methotrexate (Mtx) in patients with active rheumatoid arthritis and insufficient response to MTX: results from a randomised, dose-finding study (Darwin 1) Ann Rheum Dis. 2017;76(6):998–1008. doi: 10.1136/annrheumdis-2016-210104.
    1. Vainchenker W, Dusa A, Constantinescu SN. Jaks in pathology: role of Janus kinases in hematopoietic malignancies and immunodeficiencies. Semin Cell Dev Biol. 2008;19(4):385–393. doi: 10.1016/j.semcdb.2008.07.002.
    1. Combe B, Kivitz A, Tanaka Y, van der Heijde D, Matzkies F, Bartok B, Ye L, Guo Y, Tasset C, Sundy J, Mozaffarian N, Landewé RBM, Bae S-C, Keystone EC, Nash P. Lb0001 efficacy and safety of filgotinib for patients with rheumatoid arthritis with inadequate response to methotrexate: Finch1 primary outcome results. Ann Rheum Dis. 2019;78(Suppl 2):77–78.
    1. Westhovens R, Rigby W, van der Heijde D, Ching D, Bartok B, Matzkies F, Yin Z, Guo Y, Tasset C, Sundy J, Mozaffarian N, Messina O, Landewé RBM, Atsumi T, Burmester GR. Lb0003 efficacy and safety of filgotinib for patients with rheumatoid arthritis naïve to methotrexate therapy: Finch3 primary outcome results. Ann Rheum Dis. 2019;78(Suppl 2):259–261.
    1. Genovese MC, Kalunian K, Gottenberg J-C, Mozaffarian N, Bartok B, Matzkies F, Gao J, Guo Y, Tasset C, Sundy JS, de Vlam K, Walker D, Takeuchi T. Effect of filgotinib vs placebo on clinical response in patients with moderate to severe rheumatoid arthritis refractory to disease-modifying antirheumatic drug therapy: the Finch 2 randomized clinical trial effect of filgotinib in rheumatoid arthritis refractory to disease-modifying antirheumatic drugs effect of filgotinib in rheumatoid arthritis refractory to disease-modifying antirheumatic drugs. JAMA. 2019;322(4):315–325. doi: 10.1001/jama.2019.9055.
    1. Han BK, Kuzin I, Gaughan JP, Olsen NJ, Bottaro A. Baseline CXCL10 and CXCL13 levels are predictive biomarkers for tumor necrosis factor inhibitor therapy in patients with moderate to severe rheumatoid arthritis: a pilot, prospective study. Arthritis Res Ther. 2016;18:93. doi: 10.1186/s13075-016-0995-0.
    1. Dennis G, Jr, Holweg CT, Kummerfeld SK, Choy DF, Setiadi AF, Hackney JA, Haverty PM, Gilbert H, Lin WY, Diehl L, Fischer S, Song A, Musselman D, Klearman M, Gabay C, Kavanaugh A, Endres J, Fox DA, Martin F, Townsend MJ. Synovial phenotypes in rheumatoid arthritis correlate with response to biologic therapeutics. Arthritis Res Ther. 2014;16(2):R90. doi: 10.1186/ar4555.
    1. Bakker MF, Cavet G, Jacobs JW, Bijlsma JW, Haney DJ, Shen Y, Hesterberg LK, Smith DR, Centola M, van Roon JA, Lafeber FP, Welsing PM. Performance of a multi-biomarker score measuring rheumatoid arthritis disease activity in the camera tight control study. Ann Rheum Dis. 2012;71(10):1692–1697. doi: 10.1136/annrheumdis-2011-200963.
    1. Kremer JM, Emery P, Camp HS, Friedman A, Wang L, Othman AA, Khan N, Pangan AL, Jungerwirth S, Keystone EC. A phase IIb study of ABT-494, a selective JAK-1 inhibitor, in patients with rheumatoid arthritis and an inadequate response to anti-tumor necrosis factor therapy. Arthritis Rheumatol. 2016;68(12):2867–2877. doi: 10.1002/art.39801.
    1. Hodge JA, Kawabata TT, Krishnaswami S, Clark JD, Telliez JB, Dowty ME, Menon S, Lamba M, Zwillich S. The mechanism of action of tofacitinib—an oral Janus kinase inhibitor for the treatment of rheumatoid arthritis. Clin Exp Rheumatol. 2016;34(2):318–328.
    1. Murakami K, Kobayashi Y, Uehara S, Suzuki T, Koide M, Yamashita T, Nakamura M, Takahashi N, Kato H, Udagawa N, Nakamura Y. A JAK1/2 inhibitor, baricitinib, inhibits osteoclastogenesis by suppressing Rankl expression in osteoblasts in vitro. PLoS One. 2017;12(7):e0181126. doi: 10.1371/journal.pone.0181126.
    1. Moodley D, Yoshida H, Mostafavi S, Asinovski N, Ortiz-Lopez A, Symanowicz P, Telliez JB, Hegen M, Clark JD, Mathis D, Benoist C. Network pharmacology of JAK inhibitors. Proc Natl Acad Sci USA. 2016;113(35):9852–9857. doi: 10.1073/pnas.1610253113.
    1. Araki Y, Tsuzuki Wada T, Aizaki Y, Sato S, Yokota K, Fujimoto K, Kim YT, Oda H, Kurokawa R, Mimura T. Histone methylation and STAT-3 differentially regulate interleukin-6–induced matrix metalloproteinase gene activation in rheumatoid arthritis synovial fibroblasts. Arthritis Rheumatol. 2016;68(5):1111–1123.
    1. Calabrese LH, Rose-John S. IL-6 biology: implications for clinical targeting in rheumatic disease. Nat Rev Rheumatol. 2014;10(12):720–727. doi: 10.1038/nrrheum.2014.127.
    1. Firestein GS, Alvaro-Gracia JM, Maki R. Quantitative analysis of cytokine gene expression in rheumatoid arthritis. J Immunol. 1990;144(9):3347–3353.
    1. Nguyen HN, Noss EH, Mizoguchi C, Huppertz KS, Wei G, Watts FM, Brenner MB. Autocrine loop involving IL-6 family F member LIF, LIF receptor, and STAT4 drives sustained fibroblast production of inflammatory mediators. Immunity. 2017;46(2):220–232. doi: 10.1016/j.immuni.2017.01.004.
    1. Wei F, Chang Y, Wei W. The role of BAFF in the progression of rheumatoid arthritis. Cytokine. 2015;76(2):537–544. doi: 10.1016/j.cyto.2015.07.014.
    1. Boyle DL, Soma K, Hodge J, Kavanaugh A, Mandel D, Mease P, Shurmur R, Singhal AK, Wei N, Rosengren S, Kaplan I, Krishnaswami S, Luo Z, Bradley J, Firestein GS. The JAK inhibitor tofacitinib suppresses synovial JAK1-STAT signalling in rheumatoid arthritis. Ann Rheum Dis. 2015;74(6):1311–1316. doi: 10.1136/annrheumdis-2014-206028.
    1. Han BK, Kuzin I, Gaughan JP, Olsen NJ, Bottaro B. Baseline Cxcl10 and Cxcl13 levels are predictive biomarkers for tumor necrosis factor inhibitor therapy in patients with moderate to severe rheumatoid arthritis: a pilot, prospective study. Arthritis Res Ther. 2016;18(1):93. doi: 10.1186/s13075-016-0995-0.
    1. Gabay C, Msihid J, Zilberstein M, Paccard C, Lin Y, Graham NMH, Boyapati A. Identification of sarilumab pharmacodynamic and predictive markers in patients with inadequate response to TNF inhibition: a biomarker substudy of the phase 3 target study. RMD Open. 2018;4(1):e000607. doi: 10.1136/rmdopen-2017-000607.
    1. Kraan MC, Reece RJ, Barg EC, Smeets TJ, Farnell J, Rosenburg R, Veale DJ, Breedveld FC, Emery P, Tak PP. Modulation of inflammation and metalloproteinase expression in synovial tissue by leflunomide and methotrexate in patients with active rheumatoid arthritis. Findings in a prospective, randomized, double-blind, parallel-design clinical trial in thirty-nine patients at two centers. Arthritis Rheum. 2000;43(8):1820–1830. doi: 10.1002/1529-0131(200008)43:8<1820::AID-ANR18>;2-D.
    1. Folkersen L, Brynedal B, Diaz-Gallo LM, Ramskold D, Shchetynsky K, Westerlind H, Sundstrom Y, Schepis D, Hensvold A, Vivar N, Eloranta ML, Ronnblom L, Brunak S, Malmstrom V, Catrina A, Moerch UG, Klareskog L, Padyukov L, Berg L. Integration of known DNA, RNA and protein biomarkers provides prediction of anti-TNF response in rheumatoid arthritis: results from the combine study. Mol Med. 2016;22:322–328. doi: 10.2119/molmed.2016.00078.
    1. Wang J, Bansal AT, Martin M, Germer S, Benayed R, Essioux L, Lee JS, Begovich A, Hemmings A, Kenwright A, Taylor KE, Upmanyu R, Cutler P, Harari O, Marchini J, Criswell LA, Platt A. Genome-wide association analysis implicates the involvement of eight loci with response to tocilizumab for the treatment of rheumatoid arthritis. Pharmacogenom J. 2013;13(3):235–241. doi: 10.1038/tpj.2012.8.
    1. Orr C, Vieira-Sousa E, Boyle DL, Buch MH, Buckley CD, Canete JD, Catrina AI, Choy EHS, Emery P, Fearon U, Filer A, Gerlag D, Humby F, Isaacs JD, Just SA, Lauwerys BR, Le Goff B, Manzo A, McGarry T, McInnes IB, Najm A, Pitzalis C, Pratt A, Smith M, Tak PP, Thurlings R, Fonseca JE, Veale DJ, Tas SW. Synovial tissue research: a state-of-the-art review. Nat Rev Rheumatol. 2017;13(8):463–475. doi: 10.1038/nrrheum.2017.115.
    1. Wollenhaupt J, Silverfield J, Lee EB, Curtis JR, Wood SP, Soma K, Nduaka CI, Benda B, Gruben D, Nakamura H, Komuro Y, Zwillich SH, Wang L, Riese RJ. Safety and efficacy of tofacitinib, an oral Janus kinase inhibitor, for the treatment of rheumatoid arthritis in open-label, long-term extension studies. J Rheumatol. 2014;41(5):837–852. doi: 10.3899/jrheum.130683.
    1. Genovese MC, Kremer J, Zamani O, Ludivico C, Krogulec M, Xie L, Beattie SD, Koch AE, Cardillo TE, Rooney TP, Macias WL, de Bono S, Schlichting DE, Smolen JS. Baricitinib in patients with refractory rheumatoid arthritis. N Engl J Med. 2016;374(13):1243–1252. doi: 10.1056/NEJMoa1507247.
    1. Dougados M, van der Heijde D, Chen YC, Greenwald M, Drescher E, Liu J, Beattie S, Witt S, de la Torre I, Gaich C, Rooney T, Schlichting D, de Bono S, Emery P. Baricitinib in patients with inadequate response or intolerance to conventional synthetic Dmards: results from the RA-BUILD study. Ann Rheum Dis. 2017;76(1):88–95. doi: 10.1136/annrheumdis-2016-210094.
    1. Emery P, McInnes I, Genovese MC, Smolen JS, Kremer J, Dougados M, Schlichting DE, Rooney T, Issa M, de Bono S, Macias WL, Rogai V, Zuckerman SH, Taylor PC. Characterization of changes in lymphocyte subsets in baricitinib-treated patients with rheumatoid arthritis in two phase 3 studies [Abstract] Arthritis Rheumatol. 2015;67(suppl 10):1364–1366.
    1. Rizzi M, Lorenzetti R, Fischer K, Staniek J, Janowska I, Troilo A, Strohmeier V, Erlacher M, Kunze M, Bannert B, Kyburz D, Voll R, Venhoff E, Thiel J. Impact of tofacitinib treatment on human B-cells in vitro and in vivo. J Autoimmun. 2017;77:55–66. doi: 10.1016/j.jaut.2016.10.005.
    1. Strober B, Buonanno B, Clark JD, Kawabata T, Tan H, Wolk R, Valdez H, Langley RG, Harness J, Menter A, Papp K. Effect of tofacitinib, a Janus kinase inhibitor, on haematological parameters during 12 weeks of psoriasis treatment. Br J Dermatol. 2013;169(5):992–999. doi: 10.1111/bjd.12517.
    1. Weinhold KJ, Bukowski JF, Brennan TV, Noveck RJ, Staats JS, Lin L, Stempora L, Hammond C, Wouters A, Mojcik CF, Cheng J, Collinge M, Jesson MI, Hazra A, Biswas P, Lan S, Clark JD, Hodge JA. Reversibility of peripheral blood leukocyte phenotypic and functional changes after exposure to and withdrawal from tofacitinib, a Janus kinase inhibitor, in healthy volunteers. Clin Immunol. 2018;191:10–20. doi: 10.1016/j.clim.2018.03.002.
    1. McInnes IB, Schett G. Cytokines in the pathogenesis of rheumatoid arthritis. Nat Rev Immunol. 2007;7:429–442. doi: 10.1038/nri2094.

Source: PubMed

3
订阅