Biochemical markers identify influences on bone and cartilage degradation in osteoarthritis--the effect of sex, Kellgren-Lawrence (KL) score, body mass index (BMI), oral salmon calcitonin (sCT) treatment and diurnal variation

M A Karsdal, I Byrjalsen, A C Bay-Jensen, K Henriksen, B J Riis, C Christiansen, M A Karsdal, I Byrjalsen, A C Bay-Jensen, K Henriksen, B J Riis, C Christiansen

Abstract

Background: Osteoarthritis (OA) involves changes in both bone and cartilage. These processes might be associated under some circumstances. This study investigated correlations between bone and cartilage degradation in patients with OA as a function of sex, Kellgren-Lawrence (KL) score, Body Mass Index (BMI), oral salmon calcitonin (sCT) treatment and diurnal variation.

Methods: This study was a 2-week, double-blind, double-dummy, randomized study including 37 postmenopausal women and 36 men, aged 57-75 years, with painful knee OA, and a KL-score of I - III. Subjects were allocated to one of three treatment arms: 0.6 mg or 0.8 mg oral sCT, or placebo given twice-daily for 14 days. Correlations between gender, KL score, or BMI and the bone resorption marker, serum C-terminal telopeptide of collagen type I (CTX-I), or the cartilage degradation marker, urine C-terminal telopeptide of collagen type II (CTX-II) were investigated.

Results: At baseline, biomarkers indicated women with OA experienced higher bone and cartilage degradation than men. CTX-I levels were significantly higher, and CTX-II levels only marginally higher, in women than in men (p = 0.04 and p = 0.06, respectively). Increasing KL score was not correlated with bone resorption, but was significantly associated with the cartilage degradation CTX-II marker in both men and women (p = 0.007). BMI was significantly and negatively correlated to the bone resorption marker CTX-I, r = -0.40 (p = 0.002), but showed only a borderline positive correlation to CTX-II, r = 0.25 (p = 0.12). Before morning treatments on days 1 and 14, no correlation was seen between CTX-I and CTX-II in either the sCT or placebo group. However, oral sCT and food intake induced a clear correlation between these bone and cartilage degradation markers. Four hours after the first sCT dose on treatment days 1 and 14, a significant correlation (r = 0.71, p < 0.001) between changes in both CTX-I and CTX-II was seen. In the placebo group a weakly significant correlation between changes in both markers was found on day 1 (r = 0.49, p = 0.02), but not on day 14.

Conclusion: Bone resorption was higher in females than males, while cartilage degradation was correlated with increasing KL-score and only weakly associated with BMI. Bone and cartilage degradation were not correlated in untreated individuals, but dosing with oral sCT with or without food, and a mid-day meal, decreased bone and cartilage degradation and induced a correlation between both markers. Changes in bone and cartilage markers may aid in the identification of potential new treatment opportunities for OA.

Trial registration: Clinical trial registration number (EUDRACT2006-005532-24 & NCT00486369).

Figures

Figure 1
Figure 1
Baseline concentrations of serum CTX-I and urinary CTX-II measured in samples collected immediately prior to first dosing at treatment day 1 stratified according to gender. Values shown are geometric mean +1 SEM.
Figure 2
Figure 2
Baseline concentrations of A) serum CTX-I and B) urinary CTX-II, corrected to creatinine, measured in samples collected immediately prior to first dosing at treatment day 1 and stratified according to KL-score index for each gender. Values shown are geometric mean +1 SEM.
Figure 3
Figure 3
Relationship between baseline concentrations of BMI and A) serum CTX-I and B) urinary CTX-II measured in samples collected immediately prior to first dosing at treatment day 1. Females: filled circles; Males: open circles.
Figure 4
Figure 4
Relationship between serum CTX-I and urinary CTX-II (corrected to creatinine) in untreated subjects and subjects treated with sCT. A) & C) Concentrations in samples collected at 08:00 immediately prior to first dosing at treatment day 1. B) & D) Concentrations measured in samples collected at 12:00, i.e. 4 hours post-morning dose, relative to pre-dose at 08:00. C) & I) Concentrations measured in samples collected at 21:00, i.e. 4 hours after the pre-dinner dose, relative to pre-dose at 17:00. D) & J) Concentrations in samples collected at 08:00 immediately prior to dosing at treatment day 14. E) & K) Concentrations measured in samples collected at 12:00, i.e. 4 hours post morning dose, relative to pre-dose at 08:00. F) & L) Concentrations measured in samples collected at 21:00, i.e. 4 hours post pre-dinner dose, relative to pre-dose at 17:00.
Figure 5
Figure 5
Time course during the day of concentrations serum CTX-I (filled circles) and urinary CTX-II (open circles) in A) untreated subjects and B) subjects treated with sCT. Values shown are concentrations relative to pre-dose at 08:00 and given as mean ± 1 SEM for serum CTX-I and geometric mean ± SEM for urinary CTX-II. A meal was given at 13.00 hours and a light meal at 15.30 as described in the material and methods. Dinner was served at 18.00. Modified from [46].

References

    1. Karsdal MA, Leeming DJ, Dam EB, Henriksen K, Alexandersen P, Pastoureau P. Should subchondral bone turnover be targeted when treating osteoarthritis? Osteoarthritis Cartilage. 2008;16:638–646. doi: 10.1016/j.joca.2008.01.014.
    1. Felson DT, Neogi T. Osteoarthritis: is it a disease of cartilage or of bone? Arthritis Rheum. 2004;50:341–344. doi: 10.1002/art.20051.
    1. Hayami T, Pickarski M, Wesolowski GA, McLane J, Bone A, Destefano J. The role of subchondral bone remodeling in osteoarthritis: reduction of cartilage degeneration and prevention of osteophyte formation by alendronate in the rat anterior cruciate ligament transection model. Arthritis Rheum. 2004;50:1193–1206. doi: 10.1002/art.20124.
    1. Mouritzen U, Christgau S, Lehmann HJ, Tanko LB, Christiansen C. Cartilage turnover assessed with a newly developed assay measuring collagen type II degradation products: influence of age, sex, menopause, hormone replacement therapy, and body mass index. Ann Rheum Dis. 2003;62:332–336. doi: 10.1136/ard.62.4.332.
    1. Calvo E, Castaneda S, Largo R, Fernandez-Valle ME, Rodriguez-Salvanes F, Herrero-Beaumont G. Osteoporosis increases the severity of cartilage damage in an experimental model of osteoarthritis in rabbits. Osteoarthritis Cartilage. 2006.
    1. Ma HL, Blanchet TJ, Peluso D, Hopkins B, Morris EA, Glasson SS. Osteoarthritis severity is sex dependent in a surgical mouse model. Osteoarthritis Cartilage. 2007;15:695–700. doi: 10.1016/j.joca.2006.11.005.
    1. Hoegh-Andersen P, Tanko LB, Andersen TL, Lundberg CV, Mo JA, Heegaard AM. Ovariectomized rats as a model of postmenopausal osteoarthritis: validation and application. Arthritis Res Ther. 2004;6:R169–R180. doi: 10.1186/ar1152.
    1. Christgau S, Tanko LB, Cloos PA, Mouritzen U, Christiansen C, Delaisse JM. Suppression of elevated cartilage turnover in postmenopausal women and in ovariectomized rats by estrogen and a selective estrogen-receptor modulator (SERM) Menopause. 2004;11:508–518. doi: 10.1097/01.WCB.0000121484.18437.98.
    1. Arden N, Nevitt MC. Osteoarthritis: epidemiology. Best Pract Res Clin Rheumatol. 2006;20:3–25. doi: 10.1016/j.berh.2005.09.007.
    1. Das SK, Farooqi A. Osteoarthritis. Best Pract Res Clin Rheumatol. 2008;22:657–675. doi: 10.1016/j.berh.2008.07.002.
    1. Hunter DJ, Spector TD. The role of bone metabolism in osteoarthritis. Curr Rheumatol Rep. 2003;5:15–19. doi: 10.1007/s11926-003-0078-5.
    1. Reijman M, Hazes JM, Bierma-Zeinstra SM, Koes BW, Christgau S, Christiansen C. A new marker for osteoarthritis: cross-sectional and longitudinal approach. Arthritis Rheum. 2004;50:2471–2478. doi: 10.1002/art.20332.
    1. Felson DT, Zhang Y, Hannan MT, Naimark A, Weissman BN, Aliabadi P. The incidence and natural history of knee osteoarthritis in the elderly. The Framingham Osteoarthritis Study. Arthritis Rheum. 1995;38:1500–1505. doi: 10.1002/art.1780381017.
    1. Nevitt MC, Felson DT. Sex hormones and the risk of osteoarthritis in women: epidemiological evidence. Ann Rheum Dis. 1996;55:673–676. doi: 10.1136/ard.55.9.673.
    1. Richette P, Corvol M, Bardin T. Estrogens, cartilage, and osteoarthritis. Joint Bone Spine. 2003;70:257–262. doi: 10.1016/S1297-319X(03)00067-8.
    1. Gelber AC, Hochberg MC, Mead LA, Wang NY, Wigley FM, Klag MJ. Joint injury in young adults and risk for subsequent knee and hip osteoarthritis. Ann Intern Med. 2000;133:321–328.
    1. Bijlsma JW, Knahr K. Strategies for the prevention and management of osteoarthritis of the hip and knee. Best Pract Res Clin Rheumatol. 2007;21:59–76. doi: 10.1016/j.berh.2006.08.013.
    1. Bauer DC, Hunter DJ, Abramson SB, Attur M, Corr M, Felson D. Classification of osteoarthritis biomarkers: a proposed approach. Osteoarthritis Cartilage. 2006;14:723–727. doi: 10.1016/j.joca.2006.04.001.
    1. Karsdal MA, Henriksen K, Leeming DJ, Mitchell P, Duffin K, Barascuk N. Biochemical markers and the FDA Critical Path: how biomarkers may contribute to the understanding of pathophysiology and provide unique and necessary tools for drug development. Biomarkers. 2009;14:181–202. doi: 10.1080/13547500902777608.
    1. Schaller S, Henriksen K, Hoegh-Andersen P, Sondergaard BC, Sumer EU, Tanko LB. In vitro, ex vivo, and in vivo methodological approaches for studying therapeutic targets of osteoporosis and degenerative joint diseases: how biomarkers can assist? Assay Drug Dev Technol. 2005;3:553–580. doi: 10.1089/adt.2005.3.553.
    1. Schaller S, Henriksen K, Sveigaard C, Heegaard AM, Helix N, Stahlhut M. The chloride channel inhibitor n53736 prevents bone resorption in ovariectomized rats without changing bone formation. J Bone Miner Res. 2004;19:1144–1153. doi: 10.1359/JBMR.040302.
    1. Ravn P, Hosking D, Thompson D, Cizza G, Wasnich RD, McClung M. Monitoring of alendronate treatment and prediction of effect on bone mass by biochemical markers in the early postmenopausal intervention cohort study. J Clin Endocrinol Metab. 1999;84:2363–2368. doi: 10.1210/jc.84.7.2363.
    1. Sondergaard BC, Henriksen K, Wulf H, Oestergaard S, Schurigt U, Brauer R. Relative contribution of matrix metalloprotease and cysteine protease activities to cytokine-stimulated articular cartilage degradation. Osteoarthritis Cartilage. 2006;14:738–748. doi: 10.1016/j.joca.2006.01.016.
    1. Nielsen Rh, Stroop SD, Leeming DJ, Sondergaard BC, Sumer EU, Olsen AK. Evaluation of joint pathology by measuring cartilage degradation products in joint extracts. Ostearthritis and Cartilage. 2006. Abstract.
    1. Meulenbelt I, Kloppenburg M, Kroon HM, Houwing-Duistermaat JJ, Garnero P, Hellio-Le Graverand MP. Clusters of biochemical markers are associated with radiographic subtypes of osteoarthritis (OA) in subject with familial OA at multiple sites. The GARP study. Osteoarthritis Cartilage. 2007;15:379–385. doi: 10.1016/j.joca.2006.09.007.
    1. Chambers TJ, Moore A. The sensitivity of isolated osteoclasts to morphological transformation by calcitonin. J Clin Endocrinol Metab. 1983;57:819–824. doi: 10.1210/jcem-57-4-819.
    1. Suzuki H, Nakamura I, Takahashi N, Ikuhara T, Matsuzaki K, Isogai Y. Calcitonin-induced changes in the cytoskeleton are mediated by a signal pathway associated with protein kinase A in osteoclasts. Endocrinology. 1996;137:4685–4690. doi: 10.1210/en.137.11.4685.
    1. Shyu JF, Shih C, Tseng CY, Lin CH, Sun DT, Liu HT. Calcitonin induces podosome disassembly and detachment of osteoclasts by modulating Pyk2 and Src activities. Bone. 2007;40:1329–1342. doi: 10.1016/j.bone.2007.01.014.
    1. Sorensen MG, Henriksen K, Schaller S, Henriksen DB, Nielsen FC, Dziegiel MH. Characterization of osteoclasts derived from CD14+ monocytes isolated from peripheral blood. J Bone Miner Metab. 2007;25:36–45. doi: 10.1007/s00774-006-0725-9.
    1. Tanko LB, Bagger YZ, Alexandersen P, Devogelaer JP, Reginster JY, Chick R. Safety and efficacy of a novel salmon calcitonin (sCT) technology-based oral formulation in healthy postmenopausal women: acute and 3-month effects on biomarkers of bone turnover. J Bone Miner Res. 2004;19:1531–1538. doi: 10.1359/JBMR.040715.
    1. Bagger YZ, Tanko LB, Alexandersen P, Karsdal MA, Olson M, Mindeholm L. Oral salmon calcitonin induced suppression of urinary collagen type II degradation in postmenopausal women: A new potential treatment of osteoarthritis. Bone. 2005;37:425–430. doi: 10.1016/j.bone.2005.04.032.
    1. Karsdal MA, Tanko LB, Riis BJ, Sondergard BC, Henriksen K, Altman RD. Calcitonin is involved in cartilage homeostasis: is calcitonin a treatment for OA? Osteoarthritis Cartilage. 2006;14:617–624. doi: 10.1016/j.joca.2006.03.014.
    1. Karsdal MA, Sondergaard BC, Arnold M, Christiansen C. Calcitonin affects both bone and cartilage: a dual action treatment for osteoarthritis? Ann N Y Acad Sci. 2007;1117:181–195. doi: 10.1196/annals.1402.041.
    1. Sondergaard BC, Ostergaard S, Christiansen C, Karsdal MA. The Effect of Oral Calcitonin on Cartilage Turnover and Surface Erosion in the Ovariectomized Rat Model. Arthritis Rheum. 2007;2007:2674–8. doi: 10.1002/art.22797.
    1. Behets C, Williams JM, Chappard D, Devogelaer JP, Manicourt DH. Effects of calcitonin on subchondral trabecular bone changes and on osteoarthritic cartilage lesions after acute anterior cruciate ligament deficiency. J Bone Miner Res. 2004;19:1821–1826. doi: 10.1359/JBMR.040609.
    1. El Hajjaji H, Williams JM, Devogelaer JP, Lenz ME, Thonar EJ, Manicourt DH. Treatment with calcitonin prevents the net loss of collagen, hyaluronan and proteoglycan aggregates from cartilage in the early stages of canine experimental osteoarthritis. Osteoarthritis Cartilage. 2004;12:904–911. doi: 10.1016/j.joca.2004.08.005.
    1. Manicourt DH, Poilvache P, Van Egeren A, Devogelaer JP, Lenz ME, Thonar EJ. Synovial fluid levels of tumor necrosis factor alpha and oncostatin M correlate with levels of markers of the degradation of crosslinked collagen and cartilage aggrecan in rheumatoid arthritis but not in osteoarthritis. Arthritis Rheum. 2000;43:281–288. doi: 10.1002/1529-0131(200002)43:2<281::AID-ANR7>;2-7.
    1. Manicourt DH, Altman RD, Williams JM, Devogelaer JP, Druetz-Van Egeren A, Lenz ME. Treatment with calcitonin suppresses the responses of bone, cartilage, and synovium in the early stages of canine experimental osteoarthritis and significantly reduces the severity of the cartilage lesions. Arthritis Rheum. 1999;42:1159–1167. doi: 10.1002/1529-0131(199906)42:6<1159::AID-ANR12>;2-Q.
    1. Manicourt DH, Azria M, Mindeholm L, Thonar EJ, Devogelaer JP. Oral salmon calcitonin reduces Lequesne's algofunctional index scores and decreases urinary and serum levels of biomarkers of joint metabolism in knee osteoarthritis. Arthritis Rheum. 2006;54:3205–3211. doi: 10.1002/art.22075.
    1. Manicourt DH, Devogelaer JP, Azria M, Silverman S. Rationale for the potential use of calcitonin in osteoarthritis. J Musculoskelet Neuronal Interact. 2005;5:285–293.
    1. Manicourt DH, Azria M, Mindeholm L, Devogelaer JP. Efficacy of calcitonin therapy in patients with knee osteoarthritis: A clinical and biochemical preliminary study. Osteoarthritis Cartilage. 2005;13:s88.
    1. Leeming DJ, Hegele A, Byrjalsen I, Hofmann R, Qvist P, Karsdal MA. Biochemical markers for monitoring response to therapy: evidence for higher bone specificity by a novel marker compared with routine markers. Cancer Epidemiol Biomarkers Prev. 2008;17:1269–1276. doi: 10.1158/1055-9965.EPI-07-2697.
    1. Karsdal MA, Henriksen K, Arnold M, Christiansen C. Calcitonin: a drug of the past or for the future? Physiologic inhibition of bone resorption while sustaining osteoclast numbers improves bone quality. BioDrugs. 2008;22:137–144. doi: 10.2165/00063030-200822030-00001.
    1. Karsdal MA, Neutzsky-Wulff AV, Dziegiel MH, Christiansen C, Henriksen K. Osteoclasts secrete non-bone derived signals that induce bone formation. Biochem Biophys Res Commun. 2008;366:483–488. doi: 10.1016/j.bbrc.2007.11.168.
    1. Dam EB, Byrjalsen I, Karsdal MA, Qvist P, Christiansen C. Increased urinary excretion of C-telopeptides of type II collagen (CTX-II) predicts cartilage loss over 21 months by MRI. Osteoarthritis Cartilage. 2008.
    1. Karsdal MA, Byrjalsen I, Henriksen K, Riis BJ, Lau EM, Arnold M. The effect of oral salmon calcitonin delivered with 5-CNAC on bone and cartilage degradation in osteoarthritic patients: a 14-day randomized study. Osteoarthritis Cartilage. 2010;18:150–159. doi: 10.1016/j.joca.2009.08.004.
    1. Rosenquist C, Fledelius C, Christgau S, Pedersen BJ, Bonde M, Qvist P. Serum CrossLaps One Step ELISA. First application of monoclonal antibodies for measurement in serum of bone-related degradation products from C-terminal telopeptides of type I collagen. Clin Chem. 1998;44:2281–2289.
    1. Hunter DJ, Hart D, Snieder H, Bettica P, Swaminathan R, Spector TD. Evidence of altered bone turnover, vitamin D and calcium regulation with knee osteoarthritis in female twins. Rheumatology (Oxford) 2003;42:1311–1316. doi: 10.1093/rheumatology/keg373.
    1. Wohl GR, Shymkiw RC, Matyas JR, Kloiber R, Zernicke RF. Periarticular cancellous bone changes following anterior cruciate ligament injury. J Appl Physiol. 2001;91:336–342.
    1. Hayami T, Pickarski M, Zhuo Y, Wesolowski GA, Rodan GA, Duong LT. Characterization of articular cartilage and subchondral bone changes in the rat anterior cruciate ligament transection and meniscectomized models of osteoarthritis. Bone. 2005.
    1. Boyd SK, Matyas JR, Wohl GR, Kantzas A, Zernicke RF. Early regional adaptation of periarticular bone mineral density after anterior cruciate ligament injury. J Appl Physiol. 2000;89:2359–2364.
    1. Oliveria SA, Felson DT, Reed JI, Cirillo PA, Walker AM. Incidence of symptomatic hand, hip, and knee osteoarthritis among patients in a health maintenance organization. Arthritis Rheum. 1995;38:1134–1141. doi: 10.1002/art.1780380817.
    1. Cauley JA, Kwoh CK, Egeland G, Nevitt MC, Cooperstein L, Rohay J. Serum sex hormones and severity of osteoarthritis of the hand. J Rheumatol. 1993;20:1170–1175.
    1. Spector TD, Nandra D, Hart DJ, Doyle DV. Is hormone replacement therapy protective for hand and knee osteoarthritis in women?: The Chingford Study. Ann Rheum Dis. 1997;56:432–434. doi: 10.1136/ard.56.7.432.
    1. Spector TD, Perry LA, Jubb RW. Endogenous sex steroid levels in women with generalised osteoarthritis. Clin Rheumatol. 1991;10:316–319. doi: 10.1007/BF02208698.
    1. Cirillo DJ, Wallace RB, Wu L, Yood RA. Effect of hormone therapy on risk of hip and knee joint replacement in the Women's Health Initiative. Arthritis Rheum. 2006;54:3194–3204. doi: 10.1002/art.22138.
    1. Ham KD, Loeser RF, Lindgren BR, Carlson CS. Effects of long-term estrogen replacement therapy on osteoarthritis severity in cynomolgus monkeys. Arthritis Rheum. 2002;46:1956–1964. doi: 10.1002/art.10406.
    1. Ham KD, Carlson CS. Effects of estrogen replacement therapy on bone turnover in subchondral bone and epiphyseal metaphyseal cancellous bone of ovariectomized cynomolgus monkeys. J Bone Miner Res. 2004;19:823–829. doi: 10.1359/JBMR.040309.
    1. Pampena DA, Robertson KA, Litvinova O, Lajoie G, Goldberg HA, Hunter GK. Inhibition of hydroxyapatite formation by osteopontin phosphopeptides. Biochem J. 2004;378:1083–1087. doi: 10.1042/BJ20031150.
    1. Martin TJ, Harris GS, Melick RA, Fraser JR. Effect of calcitonin on glycosaminoglycan synthesis by embryo calf bone cells in vitro. Experientia. 1969;25:375–376. doi: 10.1007/BF01899928.
    1. Baxter E, Fraser JR, Harris GS, Martin TJ, Melick RA. Stimulation of glycosaminoglycan synthesis by thyrocalcitonin preparations. Med J Aust. 1968;1:216–217.
    1. Hellio MP, Peschard MJ, Cohen C, Richard M, Vignon E. Calcitonin inhibits phospholipase A2 and collagenase activity of human osteoarthritic chondrocytes. Osteoarthritis Cartilage. 1997;5:121–128. doi: 10.1016/S1063-4584(97)80005-2.
    1. Franchimont P, Bassleer C, Henrotin Y, Gysen P, Bassleer R. Effects of human and salmon calcitonin on human articular chondrocytes cultivated in clusters. J Clin Endocrinol Metab. 1989;69:259–266. doi: 10.1210/jcem-69-2-259.
    1. Khaldi L, Karachalios T, Galanos A, Lyritis GP. Morphometric changes in the epiphyseal plate of the growing and young adult male rat after long-term salmon calcitonin administration. Calcif Tissue Int. 2005;76:426–432. doi: 10.1007/s00223-004-1041-9.
    1. Bay-Jensen AC, Hoegh-Madsen S, Dam E, Henriksen K, Sondergaard BC, Pastoureau P. Which elements are involved in reversible and irreversible cartilage degradation in osteoarthritis? Rheumatol Int. 2009.
    1. Ameye LG, Young MF. Animal models of osteoarthritis: lessons learned while seeking the "Holy Grail". Curr Opin Rheumatol. 2006;18:537–547. doi: 10.1097/.
    1. Bjarnason NH, Bjarnason K, Haarbo J, Rosenquist C, Christiansen C. Tibolone: prevention of bone loss in late postmenopausal women. J Clin Endocrinol Metab. 1996;81:2419–2422. doi: 10.1210/jc.81.7.2419.
    1. Karsdal MA, Leeming DJ, Byrjalsen I, Christiansen C. Tibolone inhibits bone resorption without secondary positive effects on cartilage degradation. BMC Musculoskelet Disord. 2008;9:153. doi: 10.1186/1471-2474-9-153.
    1. Kerin A, Patwari P, Kuettner K, Cole A, Grodzinsky A. Molecular basis of osteoarthritis: biomechanical aspects. Cell Mol Life Sci. 2002;59:27–35. doi: 10.1007/s00018-002-8402-1.
    1. Sandmark H, Hogstedt C, Lewold S, Vingard E. Osteoarthrosis of the knee in men and women in association with overweight, smoking, and hormone therapy. Ann Rheum Dis. 1999;58:151–155. doi: 10.1136/ard.58.3.151.
    1. Tanko LB, Bagger YZ, Qin G, Alexandersen P, Larsen PJ, Christiansen C. Enlarged waist combined with elevated triglycerides is a strong predictor of accelerated atherogenesis and related cardiovascular mortality in postmenopausal women. Circulation. 2005;111:1883–1890. doi: 10.1161/01.CIR.0000161801.65408.8D.
    1. Tanko LB, Bruun JM, Alexandersen P, Bagger YZ, Richelsen B, Christiansen C. Novel associations between bioavailable estradiol and adipokines in elderly women with different phenotypes of obesity: implications for atherogenesis. Circulation. 2004;110:2246–2252. doi: 10.1161/01.CIR.0000144470.55149.E5.
    1. Tanko LB, Bagger YZ, Alexandersen P, Larsen PJ, Christiansen C. Peripheral adiposity exhibits an independent dominant antiatherogenic effect in elderly women. Circulation. 2003;107:1626–1631. doi: 10.1161/01.CIR.0000057974.74060.68.
    1. Jordan KM, Syddall HE, Garnero P, Gineyts E, Dennison EM, Sayer AA. Urinary CTX-II and glucosyl-galactosyl-pyridinoline are associated with the presence and severity of radiographic knee osteoarthritis in men. Ann Rheum Dis. 2006;65:871–877. doi: 10.1136/ard.2005.042895.
    1. Schlemmer A, Hassager C, Jensen SB, Christiansen C. Marked diurnal variation in urinary excretion of pyridinium cross-links in premenopausal women. J Clin Endocrinol Metab. 1992;74:476–480. doi: 10.1210/jc.74.3.476.
    1. Gertz BJ, Clemens JD, Holland SD, Yuan W, Greenspan S. Application of a new serum assay for type I collagen cross-linked N-telopeptides: assessment of diurnal changes in bone turnover with and without alendronate treatment. Calcif Tissue Int. 1998;63:102–106. doi: 10.1007/s002239900497.
    1. Qvist P, Christgau S, Pedersen BJ, Schlemmer A, Christiansen C. Circadian variation in the serum concentration of C-terminal telopeptide of type I collagen (serum CTx): effects of gender, age, menopausal status, posture, daylight, serum cortisol, and fasting. Bone. 2002;31:57–61. doi: 10.1016/S8756-3282(02)00791-3.
    1. Henriksen DB, Alexandersen P, Byrjalsen I, Hartmann B, Bone HG, Christiansen C. Reduction of nocturnal rise in bone resorption by subcutaneous GLP-2. Bone. 2004;34:140–147. doi: 10.1016/j.bone.2003.09.009.
    1. Karsdal MA, Byrjalsen I, Riis BJ, Christiansen C. Optimizing bioavailability of oral administration of small peptides through pharmacokinetic and pharmacodynamic parameters: the effect of water and timing of meal intake on oral delivery of Salmon Calcitonin. BMC Clin Pharmacol. 2008;8:5. doi: 10.1186/1472-6904-8-5.
    1. Karsdal MA, Byrjalsen I, Riis BJ, Christiansen C. Investigation of the diurnal variation in bone resorption for optimal drug delivery and efficacy in osteoporosis with oral calcitonin. BMC Clin Pharmacol. 2008;8:12. doi: 10.1186/1472-6904-8-12.
    1. Karsdal MA, Byrjalsen I, Henriksen K, Riis BJ, Christiansen C. A pharmacokinetic and pharmacodynamic comparison of synthetic and recombinant oral salmon calcitonin. J Clin Pharmacol. 2009;49:229–234. doi: 10.1177/0091270008329552.
    1. Karsdal MA, Byrjalsen I, Azria M, Arnold M, Choi L, Riis BJ. Influence of food intake on the bioavailability and efficacy of oral calcitonin. Br J Clin Pharmacol. 2009;67:413–420. doi: 10.1111/j.1365-2125.2009.03371.x.
    1. Karsdal MA, Byrjalsen I, Henriksen K, Riis BJ, Christiansen C. Investigations of inter- and intraindividual relationships between exposure to oral salmon calcitonin and a surrogate marker of pharmacodynamic efficacy. Eur J Clin Pharmacol. 2009.

Source: PubMed

3
订阅