Genomic Diversity of Torque Teno Virus in Blood Samples from Febrile Paediatric Outpatients in Tanzania: A Descriptive Cohort Study

Florian Laubscher, Mary-Anne Hartley, Laurent Kaiser, Samuel Cordey, Florian Laubscher, Mary-Anne Hartley, Laurent Kaiser, Samuel Cordey

Abstract

Torque teno virus (TTV) is considered to be an ubiquitous member of the commensal human blood virome commonly reported in mixed genotype co-infections. This study investigates the genomic diversity of TTV in blood samples from 816 febrile Tanzanian children. Metagenomic next-generation sequencing was used to screen for TTV in individual blood samples from a cohort of 816 febrile Tanzanian paediatric outpatients. For positive samples, the number of TTV species and genotypes present were evaluated. We investigate the linear relationship between individual TTV diversity and the patient age by linear regression. TTV was detected in 97.2% of sera. ORF1 analysis revealed the presence of 149 genotypes from 38 species, suggesting the presence of 13 new species. These genotypes were mostly present as co-infections with a median of 11 genotypes/subject (range: 1−71). In terms of species, we found a median of nine species/subject (range: 1−29). We further show a significant association between the diversity of co-detected TTV and the age of the subjects (p value < 0.0001). This study shows that significant TTV genomic diversity is acquired by the age of five and that this diversity tends to increase with age, which indicates a repetitive TTV acquisition during the first months/years of life.

Trial registration: ClinicalTrials.gov NCT02225769.

Keywords: children; genomic diversity; torque teno virus.

Conflict of interest statement

The authors declare no conflict of interest.

Figures

Figure 1
Figure 1
Flowchart of study and TTV analysis.
Figure 2
Figure 2
Age repartition. Age repartition of the 816 patients enrolled in this mNGS study. Medians are reported by black bars. Unpaired t-test was used to compare means. ns, nonsignificant.
Figure 3
Figure 3
Frequency of each TTV species and genotype. (a) Barplot showing the number of positive patients for each TTV species detected by mNGS. The 25 TTV species known to infect humans as well as the 13 additional species reported in this study are represented by black and grey bars, respectively; (b) Barplot showing the number of positive patients for each TTV genotype detected by mNGS.
Figure 4
Figure 4
TTV genomic diversity in serum. (a) Number of TTV species detected by mNGS for each patient. Median is reported (black bar); (b) Simple linear regression analysis of the number of TTV species and the age of the patients (in months). Each black dot represents one of the 785 positive patients; (c) Number of TTV genotypes detected by mNGS for each patient. Median is reported (black bar); (d) Simple linear regression analysis of the number of TTV genotypes and the age of the patients (month). Each black dot represents one of the 785 positive patients for which a genotype could be obtained (≥50% ORF1).
Figure 5
Figure 5
Relationship between co-detected TTV genotypes within a same patient. Each of the 149 TTV genotypes reported by mNGS in this paediatric cohort is represented by a dot of variable size depending on the number of times (i.e., counts) it is detected. Genotypes are grouped by species, and each of the 38 TTV species reported in this study being represented by a specific colour code. Each line indicates which TTV genotype (dark purple end) is frequently co-detected with which other (light purple end). A co-detection cut-off of ≥75% is used in order to illustrate only strong TTV genotypes co-detection rates.

References

    1. Varsani A., Opriessnig T., Celer V., Maggi F., Okamoto H., Blomström A.L., Cadar D., Harrach B., Biagini P., Kraberger S. Taxonomic update for mammalian anelloviruses (family Anelloviridae) Arch. Virol. 2021;166:2943–2953. doi: 10.1007/s00705-021-05192-x.
    1. Nishizawa T., Okamoto H., Konishi K., Yoshizawa H., Miyakawa Y., Mayumi M. A novel DNA virus (TTV) associated with elevated transaminase levels in posttransfusion hepatitis of unknown etiology. Biochem. Biophys. Res. Commun. 1997;241:92–97. doi: 10.1006/bbrc.1997.7765.
    1. Zanella M.C., Cordey S., Kaiser L. Beyond Cytomegalovirus and Epstein-Barr Virus: A Review of Viruses Composing the Blood Virome of Solid Organ Transplant and Hematopoietic Stem Cell Transplant Recipients. Clin. Microbiol. Rev. 2020;33:e00027-20. doi: 10.1128/CMR.00027-20.
    1. Kaczorowska J., van der Hoek L. Human anelloviruses: Diverse, omnipresent and commensal members of the virome. FEMS Microbial. Rev. 2020;44:305–313. doi: 10.1093/femsre/fuaa007.
    1. Lolomadze E.A., Rebrikov D.V. Constant companion: Clinical and developmental aspects of torque teno virus infections. Arch. Virol. 2020;165:2749–2757. doi: 10.1007/s00705-020-04841-x.
    1. Spandole S., Cimponeriu D., Berca L.M., Mihăescu G. Human anelloviruses: An update of molecular, epidemiological and clinical aspects. Arch. Virol. 2015;160:893–908. doi: 10.1007/s00705-015-2363-9.
    1. Maggi F., Focosi D., Albani M., Lanini L., Vatteroni M.L., Petrini M., Ceccherini-Nelli L., Pistello M., Bendinelli M. Role of hematopoietic cells in the maintenance of chronic human torquetenovirus plasma viremia. J. Virol. 2010;84:6891–6893. doi: 10.1128/JVI.00273-10.
    1. Mariscal L.F., López-Alcorocho J.M., Rodríguez-Iñigo E., Ortiz-Movilla N., de Lucas S., Bartolomé J., Carreño V. TT virus replicates in stimulated but not in nonstimulated peripheral blood mononuclear cells. Virology. 2002;301:121–129. doi: 10.1006/viro.2002.1545.
    1. Maggi F., Pistello M., Vatteroni M., Presciuttini S., Marchi S., Isola P., Fornai C., Fagnani S., Andreoli E., Antonelli G., et al. Dynamics of persistent TT virus infection, as determined in patients treated with alpha interferon for concomitant hepatitis C virus infection. J. Virol. 2001;75:11999–12004. doi: 10.1128/JVI.75.24.11999-12004.2001.
    1. Lim E.S., Zhou Y., Zhao G., Bauer I.K., Droit L., Ndao I.M., Warner B.B., Tarr P.I., Wang D., Holtz L.R. Early life dynamics of the human gut virome and bacterial microbiome in infants. Nat. Med. 2015;21:1228–1234. doi: 10.1038/nm.3950.
    1. Ohto H., Ujiie N., Takeuchi C., Sato A., Hayashi A., Ishiko H., Nishizawa T., Okamoto H. TT virus infection during childhood. Transfusion. 2002;42:892–898. doi: 10.1046/j.1537-2995.2002.00150.x.
    1. Tyschik E.A., Rasskazova A.S., Degtyareva A.V., Rebrikov D.V., Sukhikh G.T. Torque teno virus dynamics during the first year of life. Virol. J. 2018;15:96. doi: 10.1186/s12985-018-1007-6.
    1. Bagaglio S., Sitia G., Prati D., Cella D., Hasson H., Novati R., Lazzarin A., Morsica G. Mother-to-child transmission of TT virus: Sequence analysis of non-coding region of TT virus in infected mother-infant pairs. Arch. Virol. 2002;147:803–812. doi: 10.1007/s007050200027.
    1. Komatsu H., Inui A., Sogo T., Kuroda K., Tanaka T., Fujisawa T. TTV infection in children born to mothers infected with TTV but not with HBV, HCV, or HIV. J. Med. Virol. 2004;74:499–506. doi: 10.1002/jmv.20204.
    1. Yokozaki S., Fukuda Y., Nakano I., Katano Y. TT virus: A mother-to-child transmitted rather than bloodborne virus. Blood. 1999;93:3569–3570. doi: 10.1182/blood.V93.10.3569.410a46d_3569_3570.
    1. Arze C.A., Springer S., Dudas G., Patel S., Bhattacharyya A., Swaminathan H., Brugnara C., Delagrave S., Ong T., Kahvejian A., et al. Global genome analysis reveals a vast and dynamic anellovirus landscape within the human virome. Cell. Host. Microb. 2021;29:1305–1315.e6. doi: 10.1016/j.chom.2021.07.001.
    1. Bal A., Sarkozy C., Josset L., Cheynet V., Oriol G., Becker J., Vilchez G., Sesques P., Mallet F., Pachot A., et al. Metagenomic Next-Generation Sequencing Reveals Individual Composition and Dynamics of Anelloviruses during Autologous Stem Cell Transplant Recipient Management. Viruses. 2018;10:633. doi: 10.3390/v10110633.
    1. Kulifaj D., Tilloy V., Scaon E., Guerin E., Essig M., Pichon N., Hantz S., De Bernardi A., Joannes M., Barranger C., et al. Viral metagenomics analysis of kidney donors and recipients: Torque teno virus genotyping and prevalence. J. Med. Virol. 2020;92:3301–3311. doi: 10.1002/jmv.26298.
    1. Kaczorowska J., Deijs M., Klein M., Bakker M., Jebbink M.F., Sparreboom M., Kinsella C.M., Timmerman A.L., van der Hoek L. Diversity and Long-Term Dynamics of Human Blood Anelloviruses. J. Virol. 2022;96:e0010922. doi: 10.1128/jvi.00109-22.
    1. Fahsbender E., Burns J.M., Kim S., Kraberger S., Frankfurter G., Eilers A.A., Shero M.R., Beltran R., Kirkham A., McCorkell R., et al. Diverse and highly recombinant anelloviruses associated with Weddell seals in Antarctica. Virus Evol. 2017;3:vex017. doi: 10.1093/ve/vex017.
    1. Manni F., Rotola A., Caselli E., Bertorelle G., Di Luca D. Detecting recombination in TT virus: A phylogenetic approach. J. Mol. Evol. 2002;55:563–572. doi: 10.1007/s00239-002-2352-y.
    1. Worobey M. Extensive homologous recombination among widely divergent TT viruses. J. Virol. 2000;74:7666–7670. doi: 10.1128/JVI.74.16.7666-7670.2000.
    1. Cordey S., Laubscher F., Hartley M.A., Junier T., Keitel K., Docquier M., Guex N., Iseli C., Vieille G., Le Mercier P., et al. Blood virosphere in febrile Tanzanian children. Emerg. Microbes Infect. 2021;10:982–993. doi: 10.1080/22221751.2021.1925161.
    1. Keitel K., Kagoro F., Samaka J., Masimba J., Said Z., Temba H., Mlaganile T., Sangu W., Rambaud-Althaus C., Gervaix A., et al. A novel electronic algorithm using host biomarker point-of-care tests for the management of febrile illnesses in Tanzanian children (e-POCT): A randomized, controlled non-inferiority trial. PLoS Med. 2017;14:e1002411. doi: 10.1371/journal.pmed.1002411.
    1. Van Doorslaer K. Evolution of the papillomaviridae. Virology. 2013;445:11–20. doi: 10.1016/j.virol.2013.05.012.

Source: PubMed

3
订阅