Non-Motor Symptoms after One Week of High Cadence Cycling in Parkinson's Disease

Sara A Harper, Bryan T Dowdell, Jin Hyun Kim, Brandon S Pollock, Angela L Ridgel, Sara A Harper, Bryan T Dowdell, Jin Hyun Kim, Brandon S Pollock, Angela L Ridgel

Abstract

The objective was to investigate if high cadence cycling altered non-motor cognition and depression symptoms in individuals with Parkinson's disease (PD) and whether exercise responses were influenced by brain-derived neurotrophic factor (BDNF) Val66Met polymorphism. Individuals with idiopathic PD who were ≥50 years old and free of surgical procedures for PD were recruited. Participants were assigned to either a cycling (n = 20) or control (n = 15) group. The cycling group completed three sessions of high cadence cycling on a custom motorized stationary ergometer. The primary outcome was cognition (attention, executive function, and emotion recognition were assessed via WebNeuro® and global cognition via Montreal Cognitive Assessment). Depression symptoms were assessed via Beck Depression Inventory-II. There was a main effect of time for emotional recognition (p = 0.048), but there were no other changes in cognition or depression symptoms. Regardless of intervention or Val66Met polymorphism, high cadence cycling does not alter cognition or depression symptoms after three sessions in one week.

Keywords: cognition; depression; exercise; neurodegenerative disease.

Conflict of interest statement

S.A.H., B.T.D., J.H.K., and B.S.P. declare no conflict of interest. A.L.R. is Inventor on U.S. patent 9,802,081, 10,058,736 to Kent State University.

References

    1. Goldman W.P., Baty J.D., Buckles V.D., Sahrmann S., Morris J.C. Cognitive and motor functioning in parkinson disease: Subjects with and without questionable dementia. Arch. Neurol. 1998;55:674–680. doi: 10.1001/archneur.55.5.674.
    1. Aarsland D., Marsh L., Schrag A. Neuropsychiatric symptoms in parkinson’s disease. Mov. Disord. Off. J. Mov. Disord. Soc. 2009;24:2175–2186. doi: 10.1002/mds.22589.
    1. Van der Kolk N.M., Speelman A.D., van Nimwegen M., Kessels R.P., IntHout J., Hakobjan M., Munneke M., Bloem B.R., van de Warrenburg B.P. Bdnf polymorphism associates with decline in set shifting in parkinson’s disease. Neurobiol. Aging. 2015;36:1605.e1–1605.e6. doi: 10.1016/j.neurobiolaging.2014.08.023.
    1. Le Couteur D.G., Muller M., Yang M.C., Mellick G.D., McLean A.J. Age-environment and gene-environment interactions in the pathogenesis of parkinson’s disease. Rev. Environ. Health. 2002;17:51–64. doi: 10.1515/REVEH.2002.17.1.51.
    1. Bath K.G., Lee F.S. Variant bdnf (val66met) impact on brain structure and function. Cogn. Affect. Behav. Neurosci. 2006;6:79–85. doi: 10.3758/CABN.6.1.79.
    1. Hwang J.P., Tsai S.J., Hong C.J., Yang C.H., Lirng J.F., Yang Y.M. The val66met polymorphism of the brain-derived neurotrophic-factor gene is associated with geriatric depression. Neurobiol. Aging. 2006;27:1834–1837.
    1. Hariri A.R., Goldberg T.E., Mattay V.S., Kolachana B.S., Callicott J.H., Egan M.F., Weinberger D.R. Brain-derived neurotrophic factor val66met polymorphism affects human memory-related hippocampal activity and predicts memory performance. J. Neurosci. Off. J. Soc. Neurosci. 2003;23:6690–6694. doi: 10.1523/JNEUROSCI.23-17-06690.2003.
    1. McAllister A.K., Katz L.C., Lo D.C. Neurotrophins and synaptic plasticity. Annu. Rev. Neurosci. 1999;22:295–318. doi: 10.1146/annurev.neuro.22.1.295.
    1. Hyman C., Hofer M., Barde Y.A., Juhasz M., Yancopoulos G.D., Squinto S.P., Lindsay R.M. Bdnf is a neurotrophic factor for dopaminergic neurons of the substantia nigra. Nature. 1991;350:230–232.
    1. Rosenfeldt A.B., Rasanow M., Penko A.L., Beall E.B., Alberts J.L. The cyclical lower extremity exercise for parkinson’s trial (cycle): Methodology for a randomized controlled trial. BMC Neurol. 2015;15:63. doi: 10.1186/s12883-015-0313-5.
    1. Zigmond M.J., Cameron J.L., Hoffer B.J., Smeyne R.J. Neurorestoration by physical exercise: Moving forward. Parkinsonism Relat. Disord. 2012;18(Suppl. 1):S147–S150. doi: 10.1016/S1353-8020(11)70046-3.
    1. Roemmich R.T., Field A.M., Elrod J.M., Stegemoller E.L., Okun M.S., Hass C.J. Interlimb coordination is impaired during walking in persons with parkinson’s disease. Clin. Biomech. (Bristol Avon) 2013;28:93–97. doi: 10.1016/j.clinbiomech.2012.09.005.
    1. Mermillod M., Mondillon L., Rieu I., Devaux D., Chambres P., Auxiette C., Dalens H., Coulangeon L.M., Jalenques I., Durif F. Dopamine replacement therapy and deep brain stimulation of the subthalamic nuclei induce modulation of emotional processes at different spatial frequencies in parkinson’s disease. J. Parkinson Dis. 2014;4:97–110.
    1. Mondillon L., Mermillod M., Musca S.C., Rieu I., Vidal T., Chambres P., Auxiette C., Dalens H., Marie Coulangeon L., Jalenques I., et al. The combined effect of subthalamic nuclei deep brain stimulation and l-dopa increases emotion recognition in parkinson’s disease. Neuropsychologia. 2012;50:2869–2879. doi: 10.1016/j.neuropsychologia.2012.08.016.
    1. Monteiro-Junior R.S., Cevada T., Oliveira B.R., Lattari E., Portugal E.M., Carvalho A., Deslandes A.C. We need to move more: Neurobiological hypotheses of physical exercise as a treatment for parkinson’s disease. Med. Hypotheses. 2015;85:537–541. doi: 10.1016/j.mehy.2015.07.011.
    1. Tuon T., Valvassori S.S., Dal Pont G.C., Paganini C.S., Pozzi B.G., Luciano T.F., Souza P.S., Quevedo J., Souza C.T., Pinho R.A. Physical training prevents depressive symptoms and a decrease in brain-derived neurotrophic factor in parkinson’s disease. Brain Res. Bull. 2014;108:106–112. doi: 10.1016/j.brainresbull.2014.09.006.
    1. Knaepen K., Goekint M., Heyman E.M., Meeusen R. Neuroplasticity—Exercise-induced response of peripheral brain-derived neurotrophic factor: A systematic review of experimental studies in human subjects. Sports Med. (Auckland N.Z.) 2010;40:765–801. doi: 10.2165/11534530-000000000-00000.
    1. Chen Z.Y., Bath K., McEwen B., Hempstead B., Lee F. Impact of genetic variant bdnf (val66met) on brain structure and function. Novartis Found. Symp. 2008;289:180–188.
    1. Egan M.F., Kojima M., Callicott J.H., Goldberg T.E., Kolachana B.S., Bertolino A., Zaitsev E., Gold B., Goldman D., Dean M., et al. The bdnf val66met polymorphism affects activity-dependent secretion of bdnf and human memory and hippocampal function. Cell. 2003;112:257–269. doi: 10.1016/S0092-8674(03)00035-7.
    1. Ridgel A., Phillips R., Walter B., Discenzo F., Loparo K. Dynamic high-cadence cycling improves motor symptoms in parkinson’s disease. Front. Neurol. 2015;6:194. doi: 10.3389/fneur.2015.00194.
    1. Ridgel A.L., Walter B.L., Tatsuoka C., Walter E.M., Colon-Zimmermann K., Welter E., Sajatovic M. Enhanced exercise therapy in parkinson’s disease: A comparative effectiveness trial. J. Sci. Med. Sport Sports Med. Aust. 2015;19:12–17. doi: 10.1016/j.jsams.2015.01.005.
    1. ACSM . Acsm’s Guidelines for Exercise Testing and Prescription. American College of Sports Medicine; Baltimore, MD, USA: 2014.
    1. Soh S.E., Morris M.E., Watts J.J., McGinley J.L., Iansek R. Health-related quality of life in people with parkinson’s disease receiving comprehensive care. Aust. Health Rev. Publ. Aust. Hosp. Assoc. 2016;40:613–618. doi: 10.1071/AH15113.
    1. Hopkins M.E., Davis F.C., Vantieghem M.R., Whalen P.J., Bucci D.J. Differential effects of acute and regular physical exercise on cognition and affect. Neuroscience. 2012;215:59–68. doi: 10.1016/j.neuroscience.2012.04.056.
    1. Borg G. Perceived Exertion and Pain Scales. Human Kinetics; Champaign, IL, USA: 1988.
    1. Mohammadi-Abdar H., Ridgel A.L., Discenzo F.M., Loparo K.A. Design and development of a smart exercise bike for motor rehabilitation in individuals with parkinson’s disease. IEEE/ASME Trans. Mechatron. 2016;21:1650–1658. doi: 10.1109/TMECH.2015.2508030.
    1. Silverstein S.M., Berten S., Olson P., Paul R., Willams L.M., Cooper N., Gordon E. Development and validation of a world-wide-web-based neurocognitive assessment battery: Webneuro. Behav. Res. Methods. 2007;39:940–949. doi: 10.3758/BF03192989.
    1. Stanek K.M., Strain G., Devlin M., Cohen R., Paul R., Crosby R.D., Mitchell J.E., Gunstad J. Body mass index and neurocognitive functioning across the adult lifespan. Neuropsychology. 2013;27:141–151. doi: 10.1037/a0031988.
    1. Clark U.S., Neargarder S., Cronin-Golomb A. Specific impairments in the recognition of emotional facial expressions in parkinson’s disease. Neuropsychologia. 2008;46:2300–2309. doi: 10.1016/j.neuropsychologia.2008.03.014.
    1. Enrici I., Adenzato M., Ardito R.B., Mitkova A., Cavallo M., Zibetti M., Lopiano L., Castelli L. Emotion processing in parkinson’s disease: A three-level study on recognition, representation, and regulation. PLoS ONE. 2015;10:e0131470. doi: 10.1371/journal.pone.0131470.
    1. Chou K.L., Amick M.M., Brandt J., Camicioli R., Frei K., Gitelman D., Goldman J., Growdon J., Hurtig H.I., Levin B., et al. A recommended scale for cognitive screening in clinical trials of parkinson’s disease. Mov. Disord. 2010;25:2501–2507. doi: 10.1002/mds.23362.
    1. Nasreddine Z.S., Phillips N.A., Bedirian V., Charbonneau S., Whitehead V., Collin I., Cummings J.L., Chertkow H. The montreal cognitive assessment, moca: A brief screening tool for mild cognitive impairment. J. Am. Geriatr. Soc. 2005;53:695–699. doi: 10.1111/j.1532-5415.2005.53221.x.
    1. Beck A.T., Steer R.A., Ball R., Ciervo C.A., Kabat M. Use of the beck anxiety and depression inventories for primary care with medical outpatients. Assessment. 1997;4:211–219. doi: 10.1177/107319119700400301.
    1. Dashtipour K., Johnson E., Kani C., Kani K., Hadi E., Ghamsary M., Pezeshkian S., Chen J.J. Effect of exercise on motor and nonmotor symptoms of parkinson’s disease. Parkinson Dis. 2015;2015:5. doi: 10.1155/2015/586378.
    1. Doose M., Ziegenbein M., Hoos O., Reim D., Stengert W., Hoffer N., Vogel C., Ziert Y., Sieberer M. Self-selected intensity exercise in the treatment of major depression: A pragmatic rct. Int. J. Psychiatry Clin. Pract. 2015;19:266–275. doi: 10.3109/13651501.2015.1082599.
    1. Teixeira-Machado L., Araujo F.M., Cunha F.A., Menezes M., Menezes T., Melo DeSantana J. Feldenkrais method-based exercise improves quality of life in individuals with parkinson’s disease: A controlled, randomized clinical trial. Altern. Ther. Health Med. 2015;21:8–14. doi: 10.1016/j.jpain.2015.01.471.
    1. Li S.C., Chicherio C., Nyberg L., von Oertzen T., Nagel I.E., Papenberg G., Sander T., Heekeren H.R., Lindenberger U., Backman L. Ebbinghaus revisited: Influences of the bdnf val66met polymorphism on backward serial recall are modulated by human aging. J. Cogn. Neurosci. 2010;22:2164–2173. doi: 10.1162/jocn.2009.21374.
    1. Schofield P.R., Williams L.M., Paul R.H., Gatt J.M., Brown K., Luty A., Cooper N., Grieve S., Dobson-Stone C., Morris C., et al. Disturbances in selective information processing associated with the bdnf val66met polymorphism: Evidence from cognition, the p300 and fronto-hippocampal systems. Biol. Psychol. 2009;80:176–188. doi: 10.1016/j.biopsycho.2008.09.001.
    1. Foltynie T., Cheeran B., Williams-Gray C.H., Edwards M.J., Schneider S.A., Weinberger D., Rothwell J.C., Barker R.A., Bhatia K.P. Bdnf val66met influences time to onset of levodopa induced dyskinesia in parkinson’s disease. J. Neurol. Neurosurg. Psychiatry. 2009;80:141–144. doi: 10.1136/jnnp.2008.154294.
    1. Guerini F.R., Beghi E., Riboldazzi G., Zangaglia R., Pianezzola C., Bono G., Casali C., Di Lorenzo C., Agliardi C., Nappi G., et al. Bdnf val66met polymorphism is associated with cognitive impairment in italian patients with parkinson’s disease. Eur. J. Neurol. 2009;16:1240–1245. doi: 10.1111/j.1468-1331.2009.02706.x.
    1. Alonso-Recio L., Serrano-Rodriguez J.M., Carvajal-Molina F., Loeches-Alonso A., Martin-Plasencia P. Recognition of facial expression of emotions in parkinson’s disease: A theoretical review. Rev. Neurol. 2012;54:479–489.
    1. Lin C.Y., Tien Y.M., Huang J.T., Tsai C.H., Hsu L.C. Degraded impairment of emotion recognition in parkinson’s disease extends from negative to positive emotions. Behav. Neurol. 2016;2016:9287092. doi: 10.1155/2016/9287092.
    1. Mathersul D., Palmer D.M., Gur R.C., Gur R.E., Cooper N., Gordon E., Williams L.M. Explicit identification and implicit recognition of facial emotions: Ii. Core domains and relationships with general cognition. J. Clin. Exp. Neuropsychol. 2009;31:278–291. doi: 10.1080/13803390802043619.
    1. Ridgel A.L., Peacock C.A., Fickes E.J., Kim C.H. Active-assisted cycling improves tremor and bradykinesia in parkinson’s disease. Arch. Phys. Med. Rehabil. 2012;93:2049–2054. doi: 10.1016/j.apmr.2012.05.015.
    1. Ridgel A.L., Vitek J.L., Alberts J.L. Forced, not voluntary, exercise improves motor function in parkinson’s disease patients. Neurorehabilit. Neural Repair. 2009;23:600–608. doi: 10.1177/1545968308328726.
    1. Chaudhuri K.R., Schapira A.H. Non-motor symptoms of parkinson’s disease: Dopaminergic pathophysiology and treatment. Lancet Neurol. 2009;8:464–474. doi: 10.1016/S1474-4422(09)70068-7.
    1. Honig H., Antonini A., Martinez-Martin P., Forgacs I., Faye G.C., Fox T., Fox K., Mancini F., Canesi M., Odin P., et al. Intrajejunal levodopa infusion in parkinson’s disease: A pilot multicenter study of effects on nonmotor symptoms and quality of life. Mov. Disord. 2009;24:1468–1474. doi: 10.1002/mds.22596.
    1. Pantcheva P., Reyes S., Hoover J., Kaelber S., Borlongan C.V. Treating non-motor symptoms of parkinson’s disease with transplantation of stem cells. Expert Rev. Neurother. 2015;15:1231–1240. doi: 10.1586/14737175.2015.1091727.
    1. Tsui A., Isacson O. Functions of the nigrostriatal dopaminergic synapse and the use of neurotransplantation in parkinson’s disease. J. Neurol. 2011;258:1393–1405. doi: 10.1007/s00415-011-6061-6.
    1. Schrag A., Jahanshahi M., Quinn N.P. What contributes to depression in parkinson’s disease? Psychol. Med. 2001;31:65–73. doi: 10.1017/S0033291799003141.
    1. Wishart S., Macphee G.J.A. Evaluation and management of the non-motor features of parkinson’s disease. Ther. Adv. Chronic Dis. 2011;2:69–85. doi: 10.1177/2040622310387847.
    1. Seifert T., Brassard P., Wissenberg M., Rasmussen P., Nordby P., Stallknecht B., Adser H., Jakobsen A.H., Pilegaard H., Nielsen H.B., et al. Endurance training enhances bdnf release from the human brain. Am. J. Physiol. Regul. Integr. Comp. Physiol. 2010;298:R372–R377. doi: 10.1152/ajpregu.00525.2009.
    1. Frazzitta G., Maestri R., Ghilardi M.F., Riboldazzi G., Perini M., Bertotti G., Boveri N., Buttini S., Lombino F.L., Uccellini D., et al. Intensive rehabilitation increases bdnf serum levels in parkinsonian patients: A randomized study. Neurorehabilit. Neural Repair. 2014;28:163–168. doi: 10.1177/1545968313508474.
    1. Demonceau M., Maquet D., Jidovtseff B., Donneau A.F., Bury T., Croisier J.L., Crielaard J.M., Rodriguez de la Cruz C., Delvaux V., Garraux G. Effects of twelve weeks of aerobic or strength training in addition to standard care in parkinson’s disease: A controlled study. Eur. J. Phys. Rehabil. Med. 2017;53:184–200.
    1. Nadeau A., Lungu O., Duchesne C., Robillard M.-È., Bore A., Bobeuf F., Plamondon R., Lafontaine A.-L., Gheysen F., Bherer L., et al. A 12-week cycling training regimen improves gait and executive functions concomitantly in people with parkinson’s disease. Front. Hum. Neurosci. 2017;10:690. doi: 10.3389/fnhum.2016.00690.

Source: PubMed

3
订阅