Study of SARS-CoV-2 in semen and urine samples of a volunteer with positive naso-pharyngeal swab

D Paoli, F Pallotti, S Colangelo, F Basilico, L Mazzuti, O Turriziani, G Antonelli, A Lenzi, F Lombardo, D Paoli, F Pallotti, S Colangelo, F Basilico, L Mazzuti, O Turriziani, G Antonelli, A Lenzi, F Lombardo

Abstract

Introduction: The recent appearance of SARS-CoV-2 in Wuhan in 2019 has started a pandemic which has involved over a million people worldwide. A matter of debate is the possible viral detection in different body fluids than respiratory droplets. Thus, we evaluated the possible presence of SARS-CoV-2 in semen and urine samples of a volunteer with confirmed COVID-19.

Materials and methods: A 31-year-old man with fever, myalgia, anosmia, and ageusia was tested and found positive for SARS-CoV-2 through a pharyngeal swab. Eight days after he provided semen and urine samples in which viral RNA presence was measured using a Real time RT PCR system (RealStar SARS-CoV-2 RT-PCR, Altona Diagnostics) targeting E and S viral genes.

Results and discussion: Semen and urine samples search for SARS-CoV-2 RNA was negative. Although this should be interpreted cautiously, it may be possible that either the viral clearance kinetics in these matrices matches the progressive clinical recovery of the patient or that the virus was never present in these fluids at the time of the laboratory diagnosis.

Keywords: COVID-19; Pharyngeal swab; SARS-CoV-2; Semen fluid.

Conflict of interest statement

The authors declare no conflict of interest.

Figures

Fig. 1
Fig. 1
Temporal description of COVID-19 symptoms and SARS-CoV-2 testing in the volunteer subject

References

    1. Ashour HM, Elkhatib WF, Rahman MM, Elshabrawy HA. Insights into the recent 2019 novel coronavirus (SARS-CoV-2) in light of past human coronavirus outbreaks. Pathogens. 2020;9(3):186. doi: 10.3390/pathogens9030186.
    1. Center for Systems Science and Engineering (2020) Coronavirus COVID-19 global cases. Johns Hopkins University. . Accessed 3 Apr 2020
    1. Cascella M, Rajnik M, Cuomo A, Dulebohn SC, Di Napoli R (2020) Features, evaluation and treatment coronavirus (COVID-19). StatPearls Publishing. . Accessed 3 Apr 2020
    1. Corman VM, Landt O, Kaiser M, et al. Detection of 2019 novel coronavirus (2019-nCoV) by real-time RT-PCR. Euro Surveill. 2020;25(3):2000045. doi: 10.2807/1560-7917.ES.2020.25.3.2000045.
    1. Chen Y, Guo Y, Pan Y, Zhao ZJ. Structure analysis of the receptor binding of 2019-nCoV. Biochem Biophys Res Commun. 2020 doi: 10.1016/j.bbrc.2020.02.071.
    1. Ling Y, Xu S-B, Lin Y-X, et al. Persistence and clearance of viral RNA in 2019 novel coronavirus disease rehabilitation patients. Chin Med J (Engl) 2020 doi: 10.1097/CM9.0000000000000774.
    1. Xie C, Jiang L, Huang G, et al. Comparison of different samples for 2019 novel coronavirus detection by nucleic acid amplification tests. Int J Infect Dis. 2020;93:264–267. doi: 10.1016/j.ijid.2020.02.050.
    1. Peng X, Xu X, Li Y, Cheng L, Zhou X, Ren B. Transmission routes of 2019-nCoV and controls in dental practice. Int J Oral Sci. 2020;12(1):9. doi: 10.1038/s41368-020-0075-9.
    1. Velavan TP, Meyer CG. The COVID-19 epidemic. Trop Med Int Health. 2020;25(3):278–280. doi: 10.1111/tmi.13383.
    1. Wang W, Xu Y, Gao R, Lu R, Han K, Wu G, Tan W. Detection of SARS-CoV-2 in different types of clinical specimens. JAMA. 2020;11:e203786.
    1. Zhou P, Yang XL, Wang XG, Hu B, Zhang L, Zhang W, et al. A pneumonia outbreak associated with a new coronavirus of probable bat origin. Nature. 2020;579(7798):270–273. doi: 10.1038/s41586-020-2012-7.
    1. Ding Y, He L, Zhang Q, Huang Z, Che X, Hou J, Wang H, Shen H, Qui L, Li Z, Geng J, Cai J, et al. Organ distribution of severe acute respiratory syndrome (SARS) associated coronavirus (SARS-CoV) in SARS patients: implications for pathogenesis and virus transmission pathways. J Pathol. 2004;203:622–630. doi: 10.1002/path.1560.
    1. Xu J, Qi L, Chi X, Yang J, Wei X, Gong E, Peh S, Gu J. Orchitis: a complication of severe acute respiratory syndrome (SARS) Biol Reprod. 2006;74(2):410–416. doi: 10.1095/biolreprod.105.044776.

Source: PubMed

3
订阅